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Time Series Prediction

1 Time series prediction is a fundamental problem
found in several domains including climate,
finance, health, industrial applications etc

2 Time series forecasting is the process whereby past
observations of the same variable are collected and
analyzed to develop a model capable of describing
the underlying relationship

3 The model is then used to extrapolate the time
series into the future

4 Most decisions made in society are based on
information obtained from time series analysis
provided it is converted into knowledge

Figure 1
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Time Series Prediction Models

1 Statistical methods: Autoregressive(AR) models are commonly used
for time series forecasting

1 Autoregressive(AR)
2 Autoregressive moving average (ARMA)
3 Autoregressive integrated moving average (ARIMA)

2 Though ARIMA is quiet flexible, its major limitation is the
assumption of linearity form of the model: No nonlinear patterns can
be captured by ARIMA

3 Real-world time series such as weather variables (drought, rainfall,
etc.), financial series etc. exhibit non-linear behavior

4 Neural networks have shown great promise over the last two decades
in modeling nonlinear time series

1 Generalization ability and flexibility: No assumptions of model has to
be made

2 Ability to capture both deterministic and random features makes it
ideal for modeling chaotic systems

5 Nonconvex optimization issues occurs when two or more hidden layers
are required for highly complex phenomena
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Problem Statement

1 Deep neural networks trained using back-propagation perform worst
than shallow networks

2 A solution is to initially use a local unsupervised criterion to (pre)train
each layer in turn

3 The aim of the unsupervised pre-training is to:

obtain useful higher-level representation from the lower-level
representation output
obtain better weights initialization
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Motivation

1 Availability of large data from various domains(Weather, stock
markets,health records,industries etc.)

2 Advancements in hardware as well in machine learning algorithms
3 Great success in domains such as speech recognition, image

classification, computer vision
4 Deep learning applications in time series prediction, especially climate

data, is relatively new and has rarely been explored
5 Climate data is highly complex and hard to model, therefore a

non-linear model is beneficial
6 A large set of features have influence on climate variables

Figure 2: How Data Science Techniques Scale with Amount of Data

N.Agana (NCAT) June 16, 2017 6 / 35



Deep Learning

1 Deep learning is an artificial neural network with several hidden layers

2 There are a set of algorithms that are used for training deep neural
networks

3 Deep learning algorithms seek to discover good features that best
represent the problem, rather than just a way to combine them

Figure 3: A Deep Neural Network
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Unsupervised Feature Learning and Deep Learning

1 Unsupervised feature learning are widely used to learn better
representations of the input data

2 The two common methods are the autoencoders(AE) and restricted
Boltzmann machines(RBM)
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Stacked Autoencoders

1 The stacked autoencoder (SAE) model is a stack of autoencoders

2 It uses autoencoders as building blocks to create a deep network

3 An autoencoder is a NN that attempts to reproduce its input: The
target output is the input of the model

Figure 4: An Example of an Autoencoder
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Deep Belief Networks

1 A Deep Belief Network (DBN) is a multilayer neural network
constructed by stacking several Restricted Boltzmann
Machines(RBM)[3]

2 An RBM is an unsupervised learning model that is learned using
contrastive divergence

Figure 5: Construction of a DBN
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Proposed Deep Learning Approach

1 We propose an empirical mode decomposition based Deep Belief
Network with two Restricted Boltzmann Machines

2 The purpose of the decomposition is to simplify the forecasting
process

Figure 6: Flowchart of the proposed model
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Proposed Deep Learning Approach

Figure 7: Proposed Model

Figure 8: DBN with two RBMs
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Restricted Boltzmann Machines (RBMs) I

1 An RBM is a stochastic generative model that
consists of only two bipartite layers: visible layer
v and hidden layer h

2 It uses only input(training set) for learning

3 A type of unsupervised learning neural network
that can extract meaningful features of the input
data set which are more useful for learning

4 It is normally defined in terms of the energy of
configuration between the visible units and
hidden units

Figure 9: An RBM
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Restricted Boltzmann Machines (RBMs) II

The joint probability of the configuration is given by [4]:

P(v , h) = e−E(v,h)

Z ,

Where Z is the partition function (normalization factor):
Z =

∑
v ,h e

−E(v ,h)

and E (v , h), the energy of configuration:

E (v , h) = −
∑

i=visible aivi−
∑

j=hidden bjhj−
∑

ij vihjwij

Training of RBMs consists of sampling the hj given v
(or the vi given h) using Contrastive Divergence.
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Training an RBM

1 Set initial states to the training data set (visible units)
2 Sample in a back and forth process

Positive phase: P(hj = 1|v) = σ (cj +
∑

wijvi )
Negative phase: P(vi = 1|h) = σ (bi +

∑
wijhj)

3 Update all the hidden units in parallel starting with visible units,
reconstruct visible units from the hidden units, and finally update the
hidden units again

4wij = α (〈vihj〉data − 〈vihj〉model)

Figure 10: Single step of
Contrastive Divergence

4 Repeat with all training examples
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Deep Belief Network

A Deep belief network is constructed by stacking multiple RBMs together.
Training a DBN is simply the layer-wise training of the stacked RBMs:

1 Train the first layer using the input data only
(unsupervised)

2 Freeze the first layer parameters and train the
second layer using the output of the first layer
as the input

3 Use the outputs of the second layer as inputs
to the last layer (supervised) and train the last
supervised layer

4 Unfreeze all weights and fine tune the entire
network using error back propagation in a
supervised manner.

Figure 11: A DBN with
two RBMs
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Empirical Mode Decomposition (EMD)

1 EMD is an adaptive data pre-processing method suitable for
non-stationary and nonlinear time series data [5]

2 Based on the assumption that any dataset consists of different simple
intrinsic modes of oscillations

3 Given a data set, x(t), the EMD method will decompose the dataset
into several independent intrinsic mode functions (IMFs) with a
corresponding residue, which represents trend using the equation[6]:
X (t) =

∑n
j=1 cj + rn

where the cj are the IMF components and rn is a residual component

N.Agana (NCAT) June 16, 2017 17 / 35



The Hybrid EMD-BBN Model

1 A hybrid model consisting of
Empirical Mode Decomposition and
a Deep Belief Network (EMD-DBN)
is proposed in this work

Figure 12: Flowchart of the hybrid
EMD-DBN model

Figure 13: EMD decomposition of
SSI series: The top is the original
signal, followed by 7 IMFs and the

residue
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Summary of the proposed approach

The following few steps are used [1],[2]:

1 Given a time series data, determine if it is nonstationary or nonlinear
2 If yes, decompose the data into a fine number of IMFs and a residue

using the EMD
3 Divide the data into training and testing data (usually 80% for

training and 20% for testing)
4 For each IMF and residue, construct one training matrix as the input

for one DBN. The input to the DBN are the past five observations
5 Select the appropriate model structure and initialize the parameters of

the DBN. Two hidden layers are used in this work
6 Using the training data, pre-train the DBN through unsupervised

learning for each IMF and the residue
7 Fine-tune the parameters of the entire network using the

back-propagation algorithm
8 perform predictions with the trained model using the test data
9 Combine all the prediction results by summation to obtain the final

output
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Prediction of Solar Activity

1 The solar activity is characterized, among others, by means of the
relative sunspot number

2 Sunspots are dark spots that are often seen on the suns surface.

3 Its known to influence several geophysical processes on earth

4 For example, atmospheric motion, climate anomaly, ocean change,
etc. all have different degree of relation with sunspot number

5 It is also a good determiner for solar power generation

6 Due to the complexity of the sunspot number change, modeling
methods have encountered troubles trying to describe its change rules
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Description of Data

1 The monthly time series representing the solar activity cycle during
the last 268 years is used.

2 The data represents the sunspot number, that is an estimation of the
number of individual sunspots from 1949 to 2016: A total of 3216
observations

We used monthly sunspot time
series for the years 1749-1960 as
the training set, and 1961-2016
for cross-validation (testing)

Figure 14: Monthly Total Sunspot
Number: 1749 - 2016
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Decomposition of Sunspot Number Series

Figure 15: EMD Decomposition

N.Agana (NCAT) June 16, 2017 22 / 35



Results and Discussion

Figure 16: DBN prediction Results

Table 1: Prediction Errors

Model MSE RMSE MAE

MLP(5 10 1) 0.00359 0.05992 0.04798
DBN(5 10 10 1) 0.00345 0.05865 0.04396

EMD-MLP(5 10 1) 0.00078 0.09205 0.02101
EMD-DBN(5 10 10 1) 0.00020 0.01438 0.01070
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Application to Drought Prediction

1 Drought is a natural disaster that occurs
with great impact on society

2 Occurs when there is a significant deficit in
rainfall compared to the long-term average

3 Affects water resources, agricultural and
socioeconomic activities

4 Drought prediction is very vital in limiting
their effects

5 Predictions can be useful in the control and
management of water resources systems
and mitigation of economic, environmental
and social impacts

Figure 17
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Study Area and Data

1 The case study is carried out using
data from the Gunnison River
Basin, located in the Upper
Colorado River Basin with a total
drainage area of 5400km2

2 Monthly Streamflow observations
from 1912 to 2013 are used

3 Standardized Streamflow Indices
(SSI) are calculated based on the
streamflow data

Figure 18: Location of the Gunnison
River Basin [7]
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Summary of the Proposed Model

1 Obtain the different time scale SSI

2 Decompose the time series data into several IMFs and a
residue using EMD

3 Divide the data into training and testing data

4 Pre-train each layer bottom up by considering each pair of
layers as an RBM

5 Finetune the entire network using the back-propagation
algorithm

6 Use the test data to test the trained model
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Results and Discussion

Table 2: Prediction Errors for SSI 12

Model MSE RMSE MAE

MLP(5 10 1) 0.00422 0.06468 0.04211
EMD-MLP(5 10 1) 0.00209 0.03580 0.02882

DBN(5 10 10 1) 0.00211 0.04593 0.02852
EMD-DBN(5 10 10 1) 0.00131 0.02257 0.01649

Table 3: Prediction Errors for SSI 24

Model MSE RMSE MAE

MLP(5 10 1) 0.00303 0.05507 0.03969
EMD-MLP(5 10 1) 0.00179 0.04399 0.04249

DBN(5 10 10 1) 0.00125 0.03535 0.01876
EMD-DBN(5 10 10 1) 0.00077 0.02780 0.01009
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Results and Discussion

Figure 19: Comparison of the RMSE for
SSI 12 forecast

Figure 20: Comparison of the MAE for
SSI 12 forecast
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Conclusion

1 This study explored a deep belief network for drought prediction. We
proposed a hybrid model comprising of empirical mode decomposition
and deep belief network (EMD-DBN) for long term drought prediction

2 The results of the proposed approach are compared with both DBN,
MLP and also EMD-MLP.

3 Overall, the hybrid EMD-DBN model was found to provide better
forecasting results for SSI 12 and SSI 24 in the Gunnison River Basin

4 Performance of both MLP and DBN improved when the drought time
series are decomposed
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Summary of Contributions and Future Work I

Contributions:

1 Constructed a DBN model for time series prediction by adding a final
layer which simply map learned features with the target

2 Improved the performance of the proposed model by integrating
empirical mode decomposition to form a hybrid EMD-DBN model

3 Calculated Standardized drought indices using the generalized
extreme value (GEV) distribution instead of a gamma distribution

4 Applied the proposed model to drought prediction

Futurework:

1 Optimize the structure of the model( e.g. number of hidden layers,
hidden layer size, and also learning rate) by using search methods
such as grid search or random search

2 Use a linear neural network to aggregate the individual predictions
instead of just summing them
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Summary of Contributions and Future Work II

3 Predict extreme precipitation indices across the Southeastern US

4 Apply the model to predict other climate variables such as
precipitation and temperature using satellite images
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