DEVELOPMENT OF A SIMULATED ENVIRONMENT FOR DECISION MAKING WITH AN AUTONOMOUS SYSTEM UNDER UNCERTAINTY

Presenter: Marcia Nealy Department: Industrial & Systems Engineering Advisor: Dr. Younho Seong

Testing, Evaluation, and Control of Heterogeneous Large-scale Systems of Autonomous Vehicles

OVERVIEW

- Introduction
 - Background
 - Statement of the Problem
 - ✓ Aims
 - Framework (Decision Making/Judgment)

Lens Model

- Lens Model Equation
- Hybrid Lens Model

OVERVIEW (CONTINUED)

- Methodology
 - Computer-based Simulation Testbed
 - Structure of the Figure
 - Mechanism
- Future Work
- Questions & Answers

- Problem
 - Explosive detection has been an issue for military and law enforcement personnel
 - Lack of automation interaction
 - Human deciding independently
 - Leads to disastrous outcomes
- Purpose of the project
 - Develop a simulated environment
 - Assist humans with interacting with autonomous systems in making decisions
 - Train humans to make decisions while in situations that contains pressure

Computer-based simulations

- Huge number of skilled individuals needed
- Cost efficient due to ambiguity (personnel and computer time)
- Simulations are conducted in real time with the use of:
 - > Modeling
 - > Executing
 - > Animating
- Quality, safety, and productivity of a task
 (UH, 2000)

- Real Life Stories
 - United States Bomb Data Center (USBDC)

(ATF, 2016)

- World Trade Center (New York City, September 11, 2001)
 - Most highly ranked event within the United States history
 - Report of 2,666 deaths
 - Possibly involved explosives on planes or buildings
- Virtual Interactive Combat Environment (VICE)
 - Train cognitive skills needed by:
 - > Military
 - Homeland security
 - > Law enforcement
 - Confronts and resolves issues within environments

- Why are simulated environments needed by military, homeland security, and law enforcement?
 - Prevent hazardous situations (i.e. detecting explosives)
 - Practice for both experienced and non-experienced individuals
 - Train the cognitive skills of personnel by:
 - Conducting and resolving potential as well as actual conflict
 - > Urban
 - > Suburban
 - > Rural

- Complexity of a Human
 - Performance of an individual
 - Four major areas of human information processing:
 - > Mental Workload
 - Situation Awareness (Perception/ Working Memory)
 - Complacency (Decision Making)
 - > Skill Degradation (Response Selection) (Parasuraman et al., 2000)

Automation

- Automatically operate an apparatus, a process, or a system
- Takes the place of human labor
- Ability to act alone or work with a human

(Merriam-Webster Dictionary, 2017)

✓ Four Levels and Stages (Parasuraman et al., 2000)

INTRODUCTION STATEMENT OF THE PROBLEM

- Creation of a system (simulated environment)
- Benefits of the simulated environment
 - Enhancing users utilization
 - Enabling decisions to be made by a user
- ► Tools
 - ✓ Software
 - Visual Basic
 - Microsoft Excel

INTRODUCTION PROJECT AIMS

- Develop a guideline that will be effective in implementing decision making for an autonomous system into an environment that is simulated.
- Develop a tool that will enhance, integrate, and innovate a systematic process that will enable users to make decisions that sufficient to safety.
- Establish an understanding of how the collaboration between the HO and ADA can lead to effective decision making in an environment that is uncertain.

INTRODUCTION FRAMEWORK (DECISION MAKING/JUDGMENT)

- Become more introduced with the use of automation
- Process of making choices
 - Identification of decisions
 - Gathering information
 - Assessment of alternative resolutions
- Judgment focuses on the assessment of an environment

INTRODUCTION FRAMEWORK (DECISION MAKING/JUDGMENT)

- Suitable decision making approach Lens Model
 - Describes relationships between the environment and behavior of organisms within the environment
 - ✓ Use of ANOVA design
 - Correlation of components such as decisions made by users
 - Use Excel spreadsheet to keep track of data from simulation
 - Create scatterplots by showing the following:
 - > Strength
 - > Direction
 - > Shape

LENS MODEL

- Egon Brunswik's (1952)
 - Book The Conceptual Framework of Psychology
 - Probabilistic Functionalism Theory (Perception)
 - Selection of environmental cues (Responding)
 - Validity of perceptions
 - Probabilistic beliefs versus certainty
- Kenneth Hammond (1955)
 - Social Judgments

LENS MODEL LENS MODEL EQUATION

- Mathematical Approach
- Five Parameters
 - \checkmark r_a Achievement
 - ✓ Rs Control
 - ✓ Re Predictability
 - ✓ G Linear Knowledge
 - ✓ C Unmodeled Knowledge

LENS MODEL LENS MODEL EQUATION

Descriptions of the five parameters

Table 1

Description of LME Parameters

Variables	Names	Meanings
r _a	Achievement	Correspondence between the human's judgment and the actual environmental state
Re	Predictability	Reflects how well the prediction of the environment based on the state of the linear model
Rs	Control	Reflects how well the prediction of human's judgment in correspondence with the linear model
G	Linear Knowledge	Reflects how well the actual environment is captured based on model of the human
С	Unmodeled Knowledge	Reflects the differences that are similar between both the predicted and the actual of the human judgments and the values of the environment

NORTH CAROLINA A&T STATE UNIVERSITY

LENS MODEL HYBRID LENS MODEL (HLM)

LENS MODEL HYBRID LENS MODEL (HLM)

Two categorical data sets (decision) and coding (E—1 and N—0)

	Y ₂ (coded)	Y ₁ (coded)	\mathbf{Y}_2	Y_1
Not a Match	0	1	N	E
Not a Match	1	0	Е	Ν
Match	1	1	Е	Е
Match	1	1	Е	Е
Match	0	0	Ν	Ν

METHODOLOGY STRUCTURE OF THE FIGURE

METHODOLOGY STRUCTURE OF THE FIGURE

- Four tabs
 - Start Begins the simulation
 - Autonomous system moves to one of the top numbers randomly
 - User selects the random number
 - Four cues are displayed to the user
 - User inputs level of confidence from 0 to 1 (Twice)
 - ADA's decision is displayed to the user
 - User inputs decision (E or N)

METHODOLOGY STRUCTURE OF THE FIGURE

- ✓ Open Allows the user to open the data file (Excel)
- Reset Gives the user the option to start the simulation over
- Exit Saves and closes the simulation
- Grid has 100 squares (10 rows and 10 columns)
- Robot (Autonomous System)
- Level of Probability (Compares the decisions between the users)
- Shows a goal that should be accomplished by the user

1	EOD (Explosive Ordnance Disposal)											
Start Open Reset Exit												
EOD Simulation												
	0	1	2	3	4	5	6	7	8	9		
	10	11	12	13	14	15	16	17	18	19		
	20	21	22	23	24	25	26	27	28	29	81 - 100 %	
	30	31	32	33	34	35	36	37	38	39	61 - 80 %	
	40	41	42	43	44	45	45	47	48	49	41 - 60 %	
	50	51	52	53	54	55	56	57	58	59	0-20%	
	60	61	62	63	64	65	66	67	68	69		
	70	71	72	73	74	75	76	77	78	79		
	80	81	82	83	84	85	85	87	88	89		
	90	91	92	93	94	95	96	97	98	99		

NORTH CAROLINA A&T STATE UNIVERSITY

SIMULATION (TEST-RUN 1)

• User clicks the start button

E	EOD (Explosive Ordnance Disposal)												
	Start Open Reset Exit												
ľ	EOD Simulation												
	1991.												
	0	1	2	3	4	5	6	7	8	9			
	10	11	12	13	14	15	16	17	18	19	Level of Deckshills		
	20	21	22	23	24	25	26	27	28	29	81 - 100 %		
	30	31	32	33	34	35	36	37	38	39	61 - 80 %		
	40	41	42	43	44	45	46	47	48	49	41 - 60 %		
	50	51	52	53	54	55	56	57	58	59	0 - 20 %		
	60	61	62	63	64	65	66	67	68	69			
	70	71	72	73	74	75	76	77	78	79			
	80	81	82	83	84	85	86	87	88	89			
	90	91	92	93	94	95	96	97	98	99			
	GOAL										,		

- Robot moves to a randomly generated number
- A goal is set based on a portion of the code within the Visual Studio program
- User is expected to choose the random number that the robot is located above

- Four cues are displayed to the user
- User takes as much time as needed to come to a decision
- Once a decision has been made, the user is expected to click the OK button

- User decision should be based on a confidence level between 0 to 1
- User chooses a level of confidence
- First confidence level input into the blank box below
- OK button should be clicked

- Example of the user inputting his/her first confidence level
- User chose a confidence level of 0.54
- The user clicks the OK button to continue the simulation

- Decision of an autonomous system is revealed to the user
- User compares his/her confidence level with the autonomous decision aid's decision
- User makes a second decision

User Decision (2)	\times
Is this a Bomb?	
<u>Y</u> es <u>N</u> o	

- User contemplates whether or not there is an explosive based on the ADA's decision
- One of two choices are provided to the user:
 - ✓ Yes
 - < No

- Same confidence level scale used from 0 to 1
- User chooses a second level of confidence
- Second confidence level inserted in to
- User clicks the OK button

- Example of the user inserting his/her second confidence level
- A confidence level of 0.46 was chosen by the user
- The OK button is to be clicked so that the simulation continues

EOD (Explosive Ordnance Disposal)

Start Open Reset Exit

_											
	0	1	2	N/0.54 0.48 N/0.46	4	5	6	7	8	9	
	10	11	12	13	14	15	16	17	18	19	
:	20	21	22	23	24	25	26	27	28	29	Level of Probabil
:	30	31	32	33	34	35	36	37	38	39	61 - 80 %
	40	41	42	43	44	45	46	47	48	49	41 - 60 %
;	50	51	52	53	54	55	56	57	58	59	21 - 40 %
(60	61	62	63	64	65	66	67	68	69	
:	70	71	72	73	74	75	76	77	78	79	
1	80	81	82	83	84	85	86	87	88	89	
	90	91	92	93	94	95	96	97	98	99	
G	DAL										1

- After clicking the OK button, the first random number will display:
 - First decision
 - First confidence
 - ✓ ADA's decision
 - Second decision
 - Second confidence
- Also, a color will be shown in regards of the level of probability based on the decisions made by both users

- User can move below or either the left or right of the initial randomly generated number
- Robot moves above the done button once all of the grids have been filled
- User can either click done or exit to save the data as shown in the picture

- 100 points plotted
- Weak correlation
- No specific direction
- A few of the plotted points lie on the linear line

NORTH CAROLINA A&T STATE UNIVERSITY

- Positive correlation
- Starts at a decreased state and increases
- Shows a strong positive correlation between both the HO and ADA

- Weak correlation
- No specific direction
- 2 to 3 of the 16 points are semi-correlated

Testing, Evaluation, and Control of Heterogeneous Large-scale Systems of Autonomous Vehicles

- Positive correlation
- Starts at a decreased state and increases
- Shows a strong correlation between the HO and ADA

Testing, Evaluation, and Control of Heterogeneous Large-scale Systems of Autonomous Vehicles

FUTURE WORK

- Research information to create a useful and beneficial guideline to implement users
- Enhancing tools to effectively apply to the simulated environment
- Data from the simulated environment is expected to be run in the statistical analysis system (SAS) program
- Provide results to show whether or not there is a definite match between the environment and users

REFERENCES

- Ergonomics Blog. (2017). Human Information Processing. Retrieved from <u>http://www.ergonomicsblog.uk/human-information-processing/</u>
- Merriam-Webster Dictionary. (2017). Definition of Automation. Retrieved from <u>https://www.merriam-webster.com/dictionary/automation</u>
- Merriam-Webster Dictionary. (2017). Definition of Simulation. Retrieved from <u>https://www.merriam-webster.com/dictionary/simulation</u>
- Merriam-Webster Dictionary. (2017). Definition of Testbed. Retrieved from <u>https://www.merriam-webster.com/dictionary/test%20bed</u>
- Stanford Encyclopedia of Philosophy. (2013). Computer Simulations in Science. Retrieved from <u>https://plato.stanford.edu/entries/simulations-</u> <u>science/</u>
- University of Houston. (2017). Introduction to Modeling and Simulation Systems. Retrieved from http://uh.edu/~lcr3600/simulation/historical.html

REFERENCES

- Bizantz, A. M., Kirlik, A., Gay, P., Phipps, D. A., Walker, N., and Fisk, A. D. (2000). Modeling and Analysis of a Dynamic Judgment Task Using a Lens Model Approach. IEEE Transactions On Systems, Man, and Cybernetics Part A: Systems and Humans, 30(6), pp. 605-616.
- Hogarth, R. M. & Karelaia, N. (2007). Heuristic and Linear Model of Judgment: Matching Rules and Environment. Psychological Review, 114(3), pp. 733-758.
- Karelaia, N. & Hogarth, R. M. (2008). Determinants of Linear Judgment: A Meta-Analysis of Lens Model Studies. Psychological Bulletin, 134(3), pp. 404-426.
- Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A Model for Types of and Levels of Human Interaction with Automation. IEEE Transactions on Systems, Man, and Cybernetics --- Part A: Systems and Humans, 30(3), pp. 286-297.

REFERENCES

- Salvendy, G. (2012). Handbook of Human Factors and Ergonomics. Hoboken, NJ, John Wiley & Sons.
- Wickens, C. D., Lee, J. D., Liu, Y., & Becker Gordon, S. E. (2004). An Introduction to Human Factors Engineering, Upper Saddle River, NJ, Pearson Education.
- Yin, J. & Rothrock, L. (2006). A rule-based lens model. International Journal of Industrial Ergonomics, 36, pp. 499-509.

QUESTIONS, COMMENTS, AND/OR CONCERNS

NORTH CAROLINA A&T STATE UNIVERSITY

