A Personalized Highway Driving Assistance System

Saina Ramyar1 Dr. Abdollah Homaifar1

1ACIT Institute
North Carolina A&T State University

March, 2017
Introduction

Background

Types of Autonomy in Vehicles
- Semi-Autonomous: Cruise Control, Emergency Braking, Lane Departure Warning
- Fully Autonomous: Google (Waymo), Tesla self driving cars

Shortcomings
- Majority of autonomous driving systems are focused on safety
- Maneuvers generated are pre-defined and conservative
Motivation

- Drivers’ Points of View
 - People have various driving styles
 - Conservative driving does not satisfy everyone
 - Interest and trust in autonomous driving will be decreased

Solution

The autonomous features must be designed according to the drivers’ preferences.
Related Work
Personalized Driver Models

- Drivers’ steering input prediction using a transfer function
- Drivers’ lane-change intent prediction using Relevance Vector Machine (RVM)
- Disadvantages:
 - Behavior is simplified
 - Environment is simplified
 - Output is given as a recommendation to the driver
 - The model may not perform well in an unseen scenario.
Related Work

Maneuver Decision Making and Control

- Maneuver that requires both decision making and control: Lane Change
- The lane change decision is made to maximize driving safety and quality
 - Optimization methods are employed
- Mixed integer programming is used for an optimized decision
 - MIP could result in loss of convexity.
Proposed Approach: Driver Model + Controller

Scenario of Interest: Highway driving
- It is very close to autonomous driving.

System Modes: Most maneuvers on a highway:
- Path Following
- Car Following
- Lane Change

The modes are activated according to:
- Driver’s preference
- Environment condition

These modes can be overridden for a mandatory maneuver (exit).
Proposed Highway Driving Assistance System

- **Driver Model**
 - Data from an individual driver
 - Random Forest regression is used for modeling driver behavior

- **Control System:**
 - Model Predictive Control (MPC) system for tracking arbitrary references

- **Longitudinal motion is studied in order to maintain safe speed and distance with surrounding vehicles**

- **Assumptions:**
 - Available equipment for autonomous control of vehicle
 - Available data from surrounding vehicles and environment through V2V, V2I and sensors
Factors for Mode Activation:
- Vehicle Safety
- Driver’s Preference
Driver Model

Pre-processing

- Input Features:
 - Vehicle Position
 - Vehicle Velocity

- Target variable: vehicle acceleration

- All input variables are scaled in the range of [0, 1]

- Target variable transformed into exponential space

- Feature Generator

\[\mathcal{F} = [d \ d^2 \ d^3 \ v \ v \times d \ d^2 \times v \ v^2 \ d \times v^2 \ v^3] \quad (1) \]
Driver Model
Random Forest Regression Algorithm

Random Forest Regression Algorithm

Input: Number of randomly chosen predictors in each split: m_{try}, Number of bootstrap sample: n_{tree}

Output: Average of the output of all tree, P

1. for $i = 1$ to n_{tree} do
2. randomly select m_{try} number of features
3. grow an un-pruned regression tree with m_{try} randomly selected features/predictors
4. choose the best split among these randomly selected predictors
5. end for
6. for a new sample, predict the output of n_{tree} number of trees and average their output. Denote the output as P
7. return P
Preliminaries

- Consider a linear discrete system:
 \[x_{t+1} = Ax_t + Bu_t \] \hspace{1cm} (2)

- In model predictive control (MPC) a constrained optimization is solved at each time instant.

- If the sets \(X, U \) are convex, the MPC problem can be solved with Quadratic Programming (QP)

\[
\begin{align*}
\min_{U_t} J &= \frac{1}{2} w^T H w + d^T w \hspace{1cm} (3a) \\
H_{in} w &\leq K_{in} \hspace{1cm} (3b) \\
H_{eq} w &= K_{e} q \hspace{1cm} (3c)
\end{align*}
\]

Where \(w = [U_t, x_{t+1}^T, \cdots, x_{t+N}^T] \)
MPC for Tracking Dynamic Reference

- MPC controller for tracking periodic references is used here:

\[V_N(x, r_x, r_u; x^r, u^r, u_N) = V_t(x; x^r, u^r, u_N) + V_p(r_x, r_u; x^r, u^r) \] \hspace{1cm} (4)

- Planned Trajectory: Steady state behavior

\[V_p(r_x, r_u; x^r, u^r) = \sum_{i=0}^{T-1} \|x^r(i) - r(i)\|_S^2 + \|u^r(i) - r_u(i)\|_V^2 \] \hspace{1cm} (5)

- Tracking Error: Transient behavior

\[V_t(x; x^r, u^r, u_N) = \sum_{i=0}^{N-1} \|x(i) - x^r(i)\|_Q^2 + \|u(i) - u^r(i)\|_R^2 \] \hspace{1cm} (6)
MPC Formulation

- MPC for tracking a changing reference

\[
\begin{align*}
\min_{x^{r}, u^{r}, u_{N}} & \quad V_{N}(x, r_{x}, r_{u}; x^{r}, u^{r}, u_{N}) \quad (7a) \\
x(0) &= x_{0} \quad (7b) \\
x(i + 1) &= Ax(i) + Bu(i) \quad i \in \mathbb{I}[0, N-1] \quad (7c) \\
y(i) &= Cx(i) + Du(i) \quad i \in \mathbb{I}[0, N-1] \quad (7d) \\
(x(i), u(i)) &\in \mathcal{Z} \quad i \in \mathbb{I}[0, N-1] \quad (7e) \\
x^{r}(0) &= x^{r} \quad (7f) \\
x^{r}(i + 1) &= Ax^{r}(i) + Bu^{r}(i) \quad i \in \mathbb{I}[0, T-1] \quad (7g) \\
y^{r}(i) &= Cx^{r}(i) + Du^{r}(i) \quad i \in \mathbb{I}[0, T-1] \quad (7h) \\
(x^{r}(i), u^{r}(i)) &\in \mathcal{Z}^{c} \quad i \in \mathbb{I}[0, N-1] \quad (7i) \\
x(N) &= x^{r}(N) \quad (7j)
\end{align*}
\]
Basic constraints are valid at all of the scenarios.

- **Velocity**: Never be less than zero, and not exceeding the road speed limit:
 \[v_{\text{min}} \leq v_k \leq v_{\text{max}} \quad k = 0..N \]
 \[(8) \]

- **Acceleration**: Determined from the vehicle’s physical condition:
 \[a_{\text{min}} \leq a_k \leq a_{\text{max}} \quad k = 0..N \]
 \[(9) \]

- **Acceleration Rate**: Variations of acceleration (jerking) should remain in a small range to ensure passengers comfort
 \[\Delta a_{\text{min}} \leq \Delta a_k \leq \Delta a_{\text{max}} \quad k = 0..N \]
 \[(10) \]
Optimization Constraints

Car Following Scenarios

- Position constraints are added to the basic constraints

\[d_{\text{max}}_k = \min(d_{\text{front}}_i - \text{gap}) \quad t = 0..N \]
\[d_{\text{min}}_k = \max(d_{\text{rear}}_i - \text{gap}) \quad t = 0..N \]

- Position Reference

\[d_{\text{ref}}_k = \frac{d_{\text{min}}_k + d_{\text{max}}_k}{2} \]

- Weight distribution in the cost function

\[R = \frac{1}{(N_v + 1)^2} \]
\[Q = 1 - R \]
Optimization Constraints

Lane-change Scenarios

- Position constraints in lane change depend on vehicles in both current and target lanes.

\[
\begin{align*}
 d_{\text{max}_k} &= \min(d_{\text{front}_i}^{c\ell} - \text{gap}, d_{\text{front}_i}^{t\ell} - \text{gap}) & t = 0..t_{\text{trans}} \\
 d_{\text{max}_k} &= \min(d_{\text{front}_i}^{t\ell} - \text{gap}) & t = t_{\text{trans}}..N \\
 d_{\text{min}_k} &= \max(d_{\text{rear}_i}^{c\ell} - \text{gap}, d_{\text{rear}_i}^{t\ell} - \text{gap}) & t = 0..t_{\text{trans}} \\
 d_{\text{max}_k} &= \min(d_{\text{rear}_i}^{t\ell} - \text{gap}) & t = t_{\text{trans}}..N
\end{align*}
\]
Driver Model
Model Training

SHRP2 Naturalistic driving data

- Study was conducted with 3,000 volunteer drivers aged 16 – 98 over 3 years in several locations across the United States.
- Vehicles used had an unprecedented scale of sensors installed on them.

Model Training

- Imputation is used to increase observations
- All available values of acceleration are used to create a model for the position, to predict the missing values of position.
- The newly imputed values for position and acceleration are used to predict the missing values of velocity following the same procedure.
- As a result, the number of observations increased from 397 to 4231.
- 75% of data for training, 25% of data for testing
Driver Model Evaluation

Figure: Raw acceleration predictions, tested on OOB samples

Figure: Performance of model as tested on OOB samples in 10-fold CV from 10 iterations.
Driving Scenarios

- **Light Traffic**

 ![Light Traffic Diagram](image)

- **Dense Traffic**

 ![Dense Traffic Diagram](image)
Driving Scenarios

Light Traffic

- Planned trajectory for subject vehicle in current lane
 - The reference acceleration is tracked accurately
 - The speed, acceleration and jerk constraints are satisfied.
 - There are no requirements for position constraint and position reference.
 - No lane change is required.
Driving Scenarios

Dense Traffic

- Planned trajectory for subject vehicle in current lane
 - Due to the presence of surrounding vehicles, reference position is introduced.
 - The weight on position tracking is higher than acceleration tracking.
 - Reference position is tracked accurately.
 - Reference acceleration is not tracked well. ($\text{RMSE} = 4.8613$)
Driving Scenarios
Dense Traffic

- Planned trajectory for subject vehicle in adjacent lane
 - Less surrounding vehicles results in higher weight for acceleration tracking
 - Reference acceleration is tracked accurately. \((\text{RMSE} = 6 \times 10^{-11}) \)
 - Position constraints are satisfied before and after the lane change.

- **Decision:** Vehicle moves to the adjacent lane
Conclusion

- Proposed Highway driving assistance system
 - Data driven driver model
 - Trained with driver’s naturalistic driving data
 - Can emulate different driving styles
 - Model predictive control
 - Capable of tracking dynamic references
 - Ensures driving safety and comfort
- Proposed system able to detect and handle various traffic scenarios
 - Prioritize safety of the vehicle in presence of traffic
 - Alternate between different modes to ensure driver’s satisfaction
Future Work

- Additional filtering component to ensure lane change compatibility with driver’s preference
- System is extended to include different models, so detect and adapt to a new driver’s style ASAP
- Ensuring driving safety in case of inaccurate or incorrect V2X communication
This work is partially supported by the US Department of Transportation (USDOT), Research and Innovative Technology Administration (RITA) under University Transportation Center (UTC) Program (DTRT13-G-UTC47).

Special Thanks to Syed Salaken for his help in developing the Random Forest Regression model.
Thank You For Your Attention