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Centralized versus Distributed Detection

fire detection in forest via wireless sensor network

@ Centralized detection:
e Unlimited energy and bandwidth = infinite precision for sending
observations.
o Error-free communication channels.
@ Distributed detection:
e Passing local decisions to the FC.
@ Classical: error-free communication channels.
@ Our model: fading and noise in communication channels.

@ Design of distributed detection system.



The Problem and Our Approach

Problem 1(P1)

What can be the new architectures for the distributed detection system
design in the presence of fading and noise in communication
channels?




The Problem and Our Approach

Problem 1(P1)

What can be the new architectures for the distributed detection system
design in the presence of fading and noise in communication
channels?

Our Approach
We propose three new architectures:
@ (i) cooperative fusion architecture with Alamouti’'s STC scheme at
sensors,
@ (ii) cooperative fusion architecture with signal fusion at sensors,
@ (iii) parallel fusion architecture with local threshold changing at
sensors. )
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The Problem and Our Approach

Problem 2(P2)

For distributed detection of a Gaussian signal source in noise, what is
the optimal transmit power allocation at sensors?




The Problem and Our Approach

Problem 2(P2)

For distributed detection of a Gaussian signal source in noise, what is
the optimal transmit power allocation at sensors?

Our Approach
For linear fusion rule at the FC and
@ Total or individual transmit power constraints at sensors,
@ Coherent and noncoherent reception mode at the FC,
@ Different communication multiple access channel schemes.

We find transmit power allocation at sensors, such that modified
deflection coefficient (MDC) at FC is maximized.




Distributed Binary Detection over Fading Channels: Cooperative and
Parallel Architectures




Parallel Fusion Architecture

@ Sensing Channel Model

@ Ho Xk = Wi; Hq X =14 wy;
Wy ~ /\/(0, O'a,k).
@ Sy applies the LRT,
=1
fxX[H1) > m
foxlHo) y=q ™~

@ Py = P(ux = 1|H4) and
Py, = P(ugx = 1|Ho).
@ Communication Channel Model
@ yx = Ukhg + vi; by ~
CN(0,02 ), vk ~CN(0,03).

@ The FC forms the LRT
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Cooperative Fusion Architecture with STC at Sensors

Sensing Channel Model

Si and S; are cooperative partners. o a an
S; transmits v/T — auj, where 0 < o < 1. X; ’S \\/;ui _\/; u'j
rj = V1= auigj + nj, l

9i ~ CN(0,0%,), mj ~ CN(0,0%). lii| Wl-ay;

S; demodulates u;, using the knowledge of gj;,

N _ I r.

0 = sgn(Re(ry/gy). Vimay] 4T ‘/Eu, \F .
./ \ i i

nth slot: S; and S; send \/gu,- and \/guj. 5 j S |12 z,

(n+ 1)th slot: S; and S; send —\/gflj and \/gﬁ,-.



Cooperative Fusion Architecture with STC at Sensors

Communication Channel Model
@ We have

yi(n) = \/g(uihi + uihj) + vi(n), yi(n+1) = \/g(aihj — Uihy) + vi(n+ 1)
hj ~ CN(0,0%), hj ~ CN(O, 0,2,/_), vj(n), vj(n+1) ~ CN(0,a2).

@ The FC forms
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@ Using the h;, h; for all pairs, the FC forms LRT A = f(z,z; for all pairs|#o) (=g 1"




Cooperative Fusion Architecture with Signal Fusion at

Sensors

Sensing Channel Model

@ S; updates its initial decision by fusing r;; and x; and forms ~
=1 X; /[ Ja Ui
5= X)) s om o T » S |
)T #(r,%Ho) g=1"1" \ 1 /
@ The pair (S}, S;) sends \/«il;, /alj; to the FC over two rji 3 1-ay
orthogonal channels subject to noise and fading.
Communication Channel Model - U r
@ We have ,!« j ~
~ B =
yi = Valihi + v, yj = Valh+vj, \ S _—'

hj ~CN(0,0%), hj~ cN(o,aﬁj), Vi, vj ~ CN(0, 02).

@ Using h;, h; for all pairs, the FC forms the LRT
Up=1
A— f(y;,y; for all pairs|#+) O>
= ‘f(y,v,yj for all pairs|#q) UO<=O

decision.

79, to make the final



Parallel Fusion Architecture with Local Threshold

Changing at Sensors

Sensing Channel Model

@ In the absence of inter-node communication, S; assumes - y;

u
Y = —u <5 W22
‘ 1

@ S forms ; by fusing the assumed decision u; and x;. N
;=1
3 X, u=—uj|H1) >
= g 2
Al = TG THo) 52y
@ One can verify that Gj
Uj:1,l_1/:1ifX,‘>Ti,1, U[:—1,Di:—1 ifX,'<7'é7 X T L
- - >

| \
U,‘:71,L_li=1ifTi/2<Xi<Tj, “ \Sl >

U/:1,l._l,':—1ifT,'<X,'<Til1

where the thresholds 7',: , 7'/2 depend on U&V’.,piyj and

satisfy ‘ré <1< 7-,.’1 .



Performance Analysis

Assumptions
@ Gaussian sensing noises wy are i.i.d. thus Py, = Py, P, = FP.
° Sensors are positioned equally distant from the FC and thus

Uh

’Yh—*

V

@ Distances between the cooperative partners are assumed equal

across the pairs and therefore 72, = a :2)””3
n




Parallel Fusion Architecture
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Cooperative Fusion Architecture with STC at Sensors

Pe1 =T 27_—91 P,o"(1 - Pf)K_OnTn,m
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When inter-sensor channels are error-free a3 = 0 and when 7, is high we have
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Cooperative Fusion Architecture with Signal Fusion at

Sensors

- " P
Po, = > T, PEN(1 — PK=9n
n
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Parallel Fusion Architecture with Local Threshold

Changing at Sensors
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Numerical Results Setup

® K=10, 03, = 0%, pj=p, SNRc=-2010gq 0w, d=10m, dy=2m.

@ In “STC@sensors” and “fusion@sensors” a sensor spends
(1 — a)P and aP, respectively, for communicating with its
cooperative partner and with the FC, where « is different in these
two schemes.

® SNRy, = 10log;q 74, in which 7= % = 29, 0 = 0% = ~500Bm,
e=2,G = —30dB. ’
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Monte-Carlo simulation versus analytical results



Numerical Results

@ “‘STC@sensors” versus “parallel”:
o Moderate SNRy and moderate/high SNR.: “STC@sensors” >
“parallel”.
o Otherwise: “parallel” > “STC@sensors”.
@ “fusion@sensors” versus “parallel”:
o Low SNRy: “fusion@sensors” ~ “parallel”.
o Moderate/high SNRy: “fusion@sensors” > “parallel”.
@ “threshold changing@sensors” versus “parallel”:
o Moderate/high SNRy: “threshold changing@sensors” > “parallel”.
o Low SNRj, and low SNR;: “threshold changing@sensors” >
“parallel”.
o Otherwise: “parallel” > “threshold changing@sensors”.



Numerical Results

@ Ingeneral

@ Moderate/high SNRy: “threshold changing@sensors” > others.

@ Low SNRj and low SNR¢: “threshold changing@sensors” > others.

@ Low SNRj and moderate/high SNR¢: “fusion@sensors” ~ “parallel” >
others.

@ “STC@sensors” improves Pe by via providing diversity gain.
@ Diversity gain is achieved only in moderate/high SNRs.
@ “STC@sensors” and “parallel” have the same error floor.

@ 1and 2 = “STC@sensors” > “parallel” only at moderate SNR;,.

@ “fusion@sensors” improves Pe by increasing the reliability of local decision.

o “parallel” > “fusion@sensors” at low SNR;, because Pe is governed by
communication channel.

@ The above findings on comparison between different architectures remain the
same in asymptotic regime when K — oo.



Numerical Results-Impact of Correlation on

Performance Comparison

@ p~0.2-0.3:
@ High SNRy: “threshold changing@sensors” > others.
@ Medium SNRy: “fusion@sensors” > others.
@ Low SNRy: “parallel” and “fusion@sensor” > others.
@ p=0.5:
@ High SNRj and high SNR¢: “threshold changing@sensors” > others.
@ High SNR;, and medium/low SNR; and for medium SNRj:
“fusion@sensors” > others.
@ Low SNRy: “parallel” and “fusion@sensor” > others.
@ p=0.28:
@ “threshold changing@sensors” < others.



Deflection-Optimal Power Allocation for Distributed Detection with
Correlated Observations and Linear Fusion J




System Model and Problem Statement

@ Sensing Channel Model
e Ho: XNN(O,O’ol), H :XNN(O,E).
oy is the variance under Hy and X is a non-diagonal positive
definite covariance matrix under #1,
i.e., under Hy (Hg) sensors’ observations are correlated

(uncorrelated) Gaussian.
@ Communication Channel Model
@ uy is communicated to the FC with transmit power Py, . Let
hk = |hk|€/%x. We have
@ Coherent PAC : yx = /Px|hk|uk + nx,
@ Noncoherent PAC : yx = v/Pxhxux + N,
@ Coherent MAC : y = SV, /P h|ux + n,
@ Noncoherent MAC : y = SV | /Prhiux + n.
Nk ~ CN(0,02), n ~ CN(0,02).
Also Pk = Py bk, Ok = Gd,_?sekc.




PAC vs MAC
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System Model and Problem Statement

Uo=1
@ T 2 9. We let the fusion statistic T be

Up=0

e Coherent PAC: T =YV . Re(¥k),

Noncoherent PAC : T =S¥, [yk[2,

e Coherent MAC : T = Re(y), Noncoherent MAC : T = |y|2.
@ Depending on the availability of CSI at the FC, we have

e Full CSl at the FC,

o Knowledge of channel statistics at the FC.

Our Goal:
Aiming to maximize MDF,

(E(T|Hy) — B(T|Ho))®

MDF(T) = var(T|H+)

Find the optimal power allocation between sensors under total and
individual constraints on their transmit power.




Deriving Modified Deflection Coefficient

a/ bb/ a;
a/Kia;+c’

Pl bb] P,
PlKPi+Pldi+c

coherent : MDC(a;) =

noncoherent : MDC(P;) =

o 'Pk:'Ptkek, ay = \/'Pitkz %, ar= [at1 ) eeey atM]T, Pi= [731‘1 s ...,PtM]T,
© =DIAG{[#1, ..., Om] "}

@ b; and K; in MDC(a;) are identical for PAC and MAC.

@ cin MDC(a;) is M times larger in PAC.

@ b; and d; in MDC(P;) are identical for PAC and MAC.

@ K;in MDC(P;) are different for PAC and MAC.

@ cin MDC(P;) is M times larger in PAC.



Deriving Modified Deflection Coefficient

The three sets of constraints are:
e (A) TPC: atTat < Py for coherent and 17P; < Pso; for noncoherent;

@ (B) IPC: 0 < a; < /Py for coherent and 0 < P; < Py for
noncoherent where Py = [Py, , ..., Po,,] -

e (C) TIPC: Both TPC and IPC.



Maximizing MDC under TPC

Tb.bT Th.bT
a; bb; a; o P biby Py
) = max. MDC =S S5ro— (O
m;;‘x MDC(ar) atTK,atJrc (©1) Py (P1) 'P,TKt’PrJr‘P,TdtJrc (©2)
s.t. ala; < Pt ’ s.t. 1P < Prot

a>=0 P:>=0



Maximizing MDC under TPC

_abb] a ~ Plbob P,
ma?X' MDGC(ar) = atg'K[a:Jrc (©1) n:l)%x' MDC(P1) = PIKP+Pldi+c (©2)
s.t. al a=Py ’ s.t. 17P=Piot
a>=0 P: =0
° (04): 9 = Tqll || where g = Q; by, Q —Kt‘i‘pul-
(”7 z 0: & = @/ Piot, —q = 0: @& = —q/Pror.
A 1
° 02>0:q 1k where q = Q; by, 02_K1+%f’r>+73[2t117
(o]

q =0or —q = 0: Pt = ﬁlpmt.
e @ < 0: we turn (O2) to a SDP problem and find an approximate
numerical solution.
@ All the entries g do not have the same sign: we turn (O¢) and
(O2) into convex problems and solve them numerically.



Maximizing MDC under TIPC

T T T T
a; bib; a; P, bib; Pt
. max . — =t (O
ma?x a Kia+c (©s) P, PIKP+Pldi+c (O4)
s.t. ala; < Pt ’ s.t. 1P < Pt

0=a =<VPo 0=XP:=Py



Maximizing MDC under TIPC

max.
at

s.t.

T T T T
a; bib; a; / P, bib, P f
max . — Lt (O
al Kia+c (©3) Pt PIKP+Pldi+c (%)
al a=P; ’ s.t. 17P=Piot
0=a =<VPo 0=XP:=Po

@ We first obtain the corresponding TPC solution, aj; and P7;.
If the solution does not satisfy the box constraints then the closest point to the
solution that satisfies the box constraints is the solution.

min .
ar

la— a2 (0f) min. [P = PHE (O))
al a; = Pryt ) s.t. 17P; = Prot
0=<a =Py 0=<P:=XPo

@ These sub-optimal solutions are good solutions when

® K1 :me_cﬂg <1 for (03),
0 rp=Pulma < 1, where Omax =max{0s, .0k}, for (Oa).



Maximizing MDC under IPC

T T
a,Tbtb,Ta, (OS) rr;gx ) MDC(P;) _ P; bib, Py ( 6)
t

ma?x : MDC(aI) = atTKraHrc s W
ot 0<a <P st 0P <Py

@ (Os5): When k3= 1T7’+grg <1, the solutions are approximately
as = \/'Po.
@ (Og): When 4= 7’09”’“ <1, where Omax =max{bs, ...0x}, the
solutions are approxmately P: = Po.



Numerical Results-Setup

@ Py =..= Poy = P, p=01,09, M=28,¢es =¢c =2, ag = 5dBm, U%:—70dBm, and

@ Sensors are deployed at on the circumference of a circle where its diameter is 5m. The
source and FC coordinates are (0, 0, 3) and (0, 0, —10), respectively.

Q@ Ho: Xk =2k, H1: Xk =Sk +2x, k=1,..., M. z NN(O,O’S).SK N./\/'(O7 ng) with
2

2 _ 9
g = .
K ©s
S dPSk

@ Ifs=[s1,5,...,5u]’, then Ks = E{ss"} where Ks(i,)) = pjj\/0 0%, pj = p%. We
assume p be the correlation at unit distance and dj is the distance between the sensors.

@ We consider an energy detector at each sensor and maximize pg, at each sensor under
the constraint p;, < 0.1. This results in pg, = 0.6615 for all the sensors.



Numerical Results-TPC

@ Low Py;: MAC outperforms PAC, High P;.;:: PAC converges MAC.
@ Low Pyy: the OPA and UPA have very close performance, High Py;: the gap between
them is noticeable.

@ As pincreases, the difference between OPA and UPA decreases.

12 T T T T

I I I I

I I I I

I I I I

10F---------+ |- - - == e [
I | I
| R i
gl-—---_ A ---m T _____

Seo K e T —#—PAC OPA p=0.1
= - e -#-PAC UPA p=0.1
—B—PAC OPA p=0.9
”””””””” -H-PAC UPA p=0.9
—A—MAC OPA p=0.1

-Gy -A-MAC UPA p=0.1
—6-MAC OPA p=0.9
-©-MAC UPA p=0.9

50 100 150 200 250
Total transmit power (mW)




Numerical Results-TIPC

@ Low Py E and | have the same performance, High P;: there is a gap between them.
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Numerical Results-IPC

@ Low P: performance of UPA and OPA are very close to each other.
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Numerical Results-Noncoherent

@ High Py or P: PAC outperforms MAC, Low Py,:: MAC performs better. By the increase of
Pyt OF P, correlation impact the MDC more noticeably.

@ OPA and UPA have the same performance.
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Numerical Results-Effect of Detection Indices on the

Power Allocation

@ We move the source to the point (2.5, 0, 3).
@ Optimal Power Allocations:
e Under TPC or TIPC: sensors with higher p,, are assigned higher
Py, for all the Py values.
e Under IPC:
@ Low P: UPA is optimal,
@ High 7: more power is allocated to the sensors with larger pg, .
@ OPA in PAC is more similar to UPA than in MAC due to the lower
noise variance in MAC.

@ Higher p: more power is allocated to the sensors with larger py, .
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Numerical Results-Effect of pathloss between sensors

and the FC

@ We consider two scenarios:
o Lower received power: FC is at (2.5,0, —10).
o Higher received power: FC is at (2.5,0, —3).
@ Optimal power allocation techniques:
e Under TPC and TIPC
@ Lower Py water filling is the optimal power allocation technique,
@ Higher Py inverse water filling is the optimal power allocation.
e Under IPC
@ Lower P: UPA is optimal,
@ Higher P: inverse water filling is optimal power allocation.




MAC Scheme Noncoherent Reception-Lower received
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PAC Scheme Coherent Reception-Higher received
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Conclusion

@ P1: We have proposed three new architectures. There is no
explicit information exchange in scheme (iii).

@ Our numerical results show that, unless for low communication
SNR and moderate/high sensing SNR, performance improvement
is feasible with the new cooperative and parallel fusion
architectures, while scheme (iii) outperforms others.



Conclusion

@ P1: We have proposed three new architectures. There is no
explicit information exchange in scheme (iii).

@ Our numerical results show that, unless for low communication
SNR and moderate/high sensing SNR, performance improvement
is feasible with the new cooperative and parallel fusion
architectures, while scheme (iii) outperforms others.

@ P2: We considered linear fusion rule with spatially correlated
observations, coherent and noncoherent PAC and MAC schemes.
We designed optimal linear fusion rule with PAC scheme and
found optimal sensor power allocation for PAC and MAC under
TPC and IPC on sensors’ power.





