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Cooperative Tasking for Deterministic Specification Automata
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ABSTRACT

This paper proposes necessary and sufficient conditions for task
decomposability with respect to arbitrary finite number of agents. A divide-
and-conquer approach for cooperative tasking among multi-agent systems is
proposed. The basic idea is to decompose an assigned global specification
(given as a deterministic automaton) into subtasks for individual concurrent
agents such that the fulfillment of these subtasks by each individual agent leads
to the satisfaction of the global specification as a team. A cooperative scenario
of three robots has been implemented to illustrate the proposed technique. This
work provides insights on what kinds of tasks can be achieved distributively,
which helps the designers to specify achievable global tasks for a group
of agents and design necessary information sharing among each other for a
particular task.

Key Words: Cooperative Control, Task Decomposition, Multi-agent Sys-
tems, Distributed Control, Discrete Event Systems

I. INTRODUCTION

The study of multi-agent systems has emerged
as a rapidly developing multi-disciplinary area with
promising applications in assembling and transporta-
tion, parallel computing, distributed planning and
scheduling, rapid emergency response and swarming
robots [1]. The significance of multi-agent systems
roots in the power of parallelism and cooperation
between simple components that synergistically lead to
sophisticated capabilities, robustness and functionali-
ties [2]. The cooperative control of distributed multi-
agent systems, however, is still in its infancy with
significant practical and theoretical challenges that are
difficult to be formulated and tackled by the traditional
methods [3, 4]. Among these challenges, this paper
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focuses on the cooperative tasking among a team of
agents.

In the last decades, an extensive body of efforts
has been devoted to the cooperative control of multi-
agent systems. Examples of these results include
consensus seeking [5, 6] and formation stabilization
[7, 8], navigation functions for distributed formation
[9], artificial potential functions [10], graph Laplacians
for the associated neighborhood graphs [7, 11], graph-
based formation stabilization and coordination [12, 13],
distributed predictive control [14] and game theory-
based coordinations [15]. These methods successfully
model the interactions among the agents using the
topology graph and apply Lyaponuv-like energy
functions and optimization methods for stabilization
and formation of the continuous states of the agents.
Most of the existing methods usually predefine the
local interactions, e.g., the nearest neighbor law
in consensus, attraction and impulsion forces due
to local potential fields, and then investigate the
emergent behavior collectively. However, a more
relevant research question is how to design these local
interactions to guarantee a given desired collective
behavior or avoid undesired emergent behaviors.
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To address this problem, we aim to develop
a provably correct-by-design method to synthesize
local control laws and interaction rules among agents
so as to achieve a desired global task collectively.
While we focus on logical behaviors, it is assumed
that the global task is given as a deterministic
automaton and is broadcast to all agents. Individual
agents however have limited access to the global
information and project the global task automaton to
their local event sets and obtain local specifications.
The main research question here is that under what
conditions the satisfactions of these local specifications
distributively can imply the accomplishment of the
global task. Toward this objective, in our previous
work [16], the task decomposability condition was
provided for the case of two agents and a hierarchical
algorithm was proposed for more than two agents
as a sufficient condition. The approach was then
applied to the formation control of two unmanned
helicopters [17]. This paper leverages our previous
works by developing a scalable top-down correct-by-
design method for distributed coordination and control
of multi-agent systems such that the group of agents,
as a team, can achieve the specified requirements,
collectively. Necessary and sufficient conditions for the
decomposability of a task automaton with respect to an
arbitrary finite number of agents is provided. It is further
shown that the fulfillment of local specifications can
guarantee to achieve the global specification, provided
the satisfaction of the decomposability conditions.

The proposed conditions serve beyond the direct
comparison of the global task and the composition
of local specifications [18], but gaining insights on
the decomposability in terms of the task structure and
event distribution among the agents. The proposed
decomposability conditions state that an automaton
is decomposable if and only if any decision on the
order or selection between two transitions can be made
by at least one of the agents, the interleaving of
any pair of strings after synchronizing on a shared
event does not introduce a new string that is not in
the original automaton (the parallel composition of
local task automata does not allow an illegal global
behavior), and each local task automaton bisimulates a
deterministic automaton (to ensure that the collection of
local tasks does not disallow a legal global behavior).
These insights may help operators to specify achievable
global tasks for a group of agents and design necessary
information sharing among each other for a particular
task.

The rest of the paper is organized as follows.
Preliminary notations, definitions and problem for-
mulation are represented in Section II. Section III

introduces the necessary and sufficient conditions
for the decomposability of an automaton with
respect to parallel composition and an arbitrary finite
number of local event sets. This section furthermore
proves that, provided the task decomposability, the
fulfilment of local tasks result in the satisfaction of
global specification. This chapter also revisits the
implementation of the cooperative control scenario of
three robots [16] to illustrate the cooperative tasking for
more than two agents. Finally, the paper concludes with
remarks and discussions in Section IV. The proofs of
lemmas are provided in the Appendix.

II. PROBLEM FORMULATION

We first recall the definition of deterministic
automaton [19].

Definition 1 (Automaton) A deterministic automaton is
a tuple A := (Q, q0, E, δ) consisting of a set of states
Q; an initial state q0 ∈ Q; a set of events E that
causes transitions between the states, and a transition
relation δ ⊆ Q× E ×Q (with a partial map δ : Q×
E → Q), such that (q, e, q′) ∈ δ if and only if state q
is transited to state q′ by event e, denoted by q e→ q′

(or δ(q, e) = q′). In general the automaton also has
an argument Qm ⊆ Q of marked (accepting or final)
states to assign a meaning of accomplishment to some
states. For an automaton whose each state represents an
accomplishment of a stage of the specification, all states
can be considered as marked states and Qm is omitted
from the tuple.

With an abuse of notation, the definitions of the
transition relation can be extended from the domain of
Q× E into the domain of Q× E∗ to define transitions
over strings s ∈ E∗, where E∗ stands for the Kleene−
Closure of E (the collection of all finite sequences of
events over elements of E).

Definition 2 (Transition on strings) For a deterministic
automaton the existence of a transition over a string
s ∈ E∗ from a state q ∈ Q is denoted by δ(q, s)!
and inductively defined as δ(q, ε) = q, and δ(q, se) =
δ(δ(q, s), e) for s ∈ E∗ and e ∈ E. The existence of a
set L ⊆ E∗ of strings from a state q ∈ Q is then denoted
as δ(q, L)! and read as ∀s ∈ L : δ(q, s)!.

The transition relation is a partial relation, and in
general some of the states might not be accessible from
the initial state.
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Definition 3 The operator Ac(.) [20] is then defined
by excluding the states and their attached tran-
sitions that are not reachable from the initial
state as Ac(A) = (Qac, q0, E, δac) with Qac = {q ∈
Q|∃s ∈ E∗, q ∈ δ(q0, s)} and δac = {(q, e, q′) ∈ δ|e ∈
E, q, q′ ∈ Qac}. Since Ac(.) has no effect on the
behavior of the automaton, from now on we take A =
Ac(A).

The qualitative behavior of a deterministic system
is described by its language defined as

Definition 4 (Language, language equivalent
automata) For a given automaton A, the language
generated by A is defined as L(A) := {s ∈
E∗|δ(q0, s)!}. Two automata A1 and A2 are said
to be language equivalent if L(A1) = L(A2).

In cooperative tasking, each agent has a local
observation from the global task: the perceived global
task, filtered by its local event set, i.e., through
a mapping over each agent’s event set, as the
interpretation of each agent from the global task.
Particularly, natural projections PEi(AS) are obtained
from AS by replacing its events that belong to E\Ei by
ε-moves, and then, merging the ε-related states. The ε-
related states form equivalent classes defined as follows.

Definition 5 (Equivalent class of states, [21]) Con-
sider an automaton AS = (Q, q0, E, δ) and an event
set E′ ⊆ E. Then, the relation ∼E′ is the minimal
equivalence relation on the set Q of states such that
q′ ∈ δ(q, e) ∧ e /∈ E′ ⇒ q ∼E′ q′, and [q]E′ denotes the
equivalence class of q defined on ∼E′ . The set of
equivalent classes of states over ∼E′ , is denoted by
Q/∼E′ and defined as Q/∼E′ = {[q]E′ |q ∈ Q}.

∼E′ is an equivalence relation as it is reflective
(q ∼E′ q), symmetric (q ∼E′ q′ ⇔ q′ ∼E′ q) and tran-
sitive (q ∼E′ q′ ∧ q′ ∼E′ q′′ ⇒ q ∼E′ q′′).

It should be noted that the relation ∼E′ can
be defined for any E′ ⊆ E, for example, ∼Ei and
∼Ei∪Ej

, respectively denote the equivalence relations
with respect to Ei and Ei ∪ Ej . Moreover, when it is
clear from the context, ∼i is used to denote ∼Ei

for
simplicity.

Next, natural projection over strings is denoted by
pE′ : E∗ → E′∗, takes a string from the event set E and
eliminates events in it that do not belong to the event set
E′ ⊆ E. The natural projection is formally defined on
the strings as

Definition 6 (Natural Projection on String, [20])
Consider a global event set E and an event set E′ ⊆
E. Then, the natural projection pE′ : E∗ → E′∗ is
inductively defined as pE′(ε) = ε, and ∀s ∈ E∗, e ∈ E :

pE′(se) =

{
pE′(s)e if e ∈ E′;
pE′(s) otherwise.

The natural projection is then formally defined on
an automaton as follows.

Definition 7 (Natural Projection on Automaton) Con-
sider a deterministic automaton AS = (Q, q0, E, δ)
and an event set E′ ⊆ E. Then, PE′(AS) = (Qi =
Q/∼E′ , [q0]E′ , E′, δ′), with [q′]E′ ∈ δ′([q]E′ , e) if there
exist states q1 and q′1 such that q1 ∼E′ q, q′1 ∼E′

q′, and δ(q1, e) = q′1. Again, PE′(AS) can be defined
into any event set E′ ⊆ E. For example, PEi

(AS)
and PEi∪Ej

(AS), respectively denote the natural
projections of AS into Ei and Ei ∪ Ej . When it is clear
from the context, PEi is replaced with Pi, for simplicity.

The collective task is then obtained using the
parallel composition of local task automata, as the
perception of the team from the global task.

Definition 8 (Parallel Composition [19])
Let Ai =

(
Qi, q

0
i , Ei, δi

)
, i = 1, 2, be automata. The

parallel composition (synchronous composition)
of A1 and A2 is the automaton A1||A2 =(
Q = Q1 ×Q2, q0 = (q01 , q

0
2), E = E1 ∪ E2, δ

)
, with δ

defined as ∀(q1, q2) ∈ Q, e ∈ E :
δ((q1, q2), e) =

(δ1(q1, e), δ2(q2, e)) , if δ1(q1, e)!, δ2(q2, e)!,
e ∈ E1 ∩ E2;

(δ1(q1, e), q2) , if δ1(q1, e)!, e ∈ E1\E2;
(q1, δ2(q2, e)) , if δ2(q2, e)!, e ∈ E2\E1;
undefined, otherwise.

The parallel composition of Ai, i = 1, 2, ..., n
is called parallel distributed system, and is defined
based on the associativity property of parallel

composition [20] as
n

‖
i=1

Ai := A1 ‖ ... ‖ An := An ‖

(An−1 ‖ (· · · ‖ (A2 ‖ A1))).

The obtained collective task is then compared
with the original global task automaton using the
bisimulation relation, in order to ensure that the team of
agents understands the global specification, collectively.

Definition 9 (Bisimulation [20]) Consider two
automata Ai = (Qi, q

0
i , E, δi), i = 1, 2. The automaton

A1 is said to be similar to A2 (or A2 simulates A1),
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denoted byA1 ≺ A2, if there exists a simulation relation
from A1 to A2 over Q1, Q2 and with respect to E, i.e.,
(1) (q01 , q

0
2) ∈ R, and (2) ∀ (q1, q2) ∈ R, q′1 ∈ δ1(q1, e),

then ∃q′2 ∈ Q2 such that q′2 ∈ δ2(q2, e), (q′1, q
′
2) ∈ R

[20].
Automata A1 and A2 are said to be bisimilar

(bisimulate each other), denoted by A1
∼= A2 if A1 ≺

A2 with a simulation relation R1, A2 ≺ A1 with a
simulation relation R2 and R−11 = R2 [22], where
R−11 = {(y, x) ∈ Q2 ×Q1|(x, y) ∈ R1}.

Based on these definitions we may now formally
define the decomposability of an automaton with
respect to parallel composition and natural projections
as follows.

Definition 10 (Automaton decomposability) A task
automaton AS with the event set E and local event sets
Ei, i = 1, ..., n, E =

n
∪
i=1
Ei, is said to be decomposable

with respect to parallel composition and natural

projections Pi, i = 1, · · · , n, when
n

‖
i=1

Pi (AS) ∼= AS .

Example 1 The automaton AS:

• e2 // • b // • e3 // • c // • e5 // • d // •

// •

a

OO

e1

��

•

• a // • e2 // • b // • e3 // • c // • e5 // •

d

OO

with E = E1 ∪ E2 ∪ E3, E1 = {a, c, d, e1, e5},
E2 = {a, b, d, e2}, E3 = {b, c, e3}, P1(AS):

• c // • e5 // • d // •
// •

a 55kkkkkk

e1 ))SSS
SSS

• a // • c // • e5 // • d // •

,

P2(AS) ∼= // • a // • e2 // • b // • d // • and

P3(AS) ∼= // • b // • e3 // • c // • , is decomposable
as As

∼= P1(AS)||P2(AS)||P3(AS).

Remark 1 Since bisimilarity is an equivalence relation
it is also transitive, and hence Pi(AS)’s can be denoted
as being bisimilar, rather than equal to the drawn
automata, since P ′i (AS) ∼= Pi(AS), i = 1, . . . , n, and
n

‖
i=1

P ′i (AS) ∼= AS is equivalent to
n

‖
i=1

Pi(AS) ∼= AS .

In [16], we proposed a necessary and sufficient
condition for the task decomposability with respect to
two agents. For more than two agents a hierarchical

algorithm was proposed to iteratively use the
decomposability for two agents. The algorithm is
a sufficient condition only, as it can decompose
the task automaton if at each stage the task is
decomposable with respect to one local event set and
the rest of agents. For instance, in Example 1 AS ,
is decomposable as As

∼= P1(AS)||P2(AS)||P3(AS),
and choosing any of local event sets E1, E2 and E3

the algorithm passes the first stage of hierarchical
decomposition, as As

∼= P1(AS)||(P2(AS)||P3(AS)) ∼=
P3(AS)||(P1(AS)||P2(AS)) ∼=
P2(AS)||(P1(AS)||P3(AS)), but it gets stuck at
the second step, as PE2∪E3

(AS) � P2(AS)||P3(AS),
PE1∪E2(AS) � P1(AS)||P2(AS) and PE1∪E3(AS) �
P1(AS)||P3(AS)). Moreover, it is possible to show
by counterexamples that not all automata are
decomposable with respect to parallel composition and
natural projections (see following example). Then, a
natural follow-up question is what makes an automaton
decomposable.

Problem 1 Given a deterministic task automaton AS

with event set E =
n
∪
i=1
Ei and local event sets Ei,

i = 1, · · · , n, what are the necessary and sufficient
conditions that AS is decomposable with respect to
parallel composition and natural projections Pi, i =

1, · · · , n, such that
n

‖
i=1

Pi (AS) ∼= AS?

III. TASK DECOMPOSITION FOR n
AGENTS

The main result on task automaton decomposition
is given as follows.

Theorem 1 A deterministic automaton AS =(
Q, q0, E =

n⋃
i=1

Ei, δ

)
is decomposable with respect

to parallel composition and natural projections Pi,

i = 1, ..., n such that AS
∼=

n

||
i=1

Pi (AS) if and only if

• DC1: ∀e1, e2 ∈ E, q ∈ Q: [δ(q, e1)! ∧ δ(q, e2)!]
⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆
Ei] ∨ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗:
[δ(q, e1e2s)! ∨ δ(q, e2e1s)!]
⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆
Ei] ∨ [δ(q, e1e2s)! ∧ δ(q, e2e1s)!];

• DC3: ∀q, q1, q2 ∈ Q, strings s, s′ over E,
δ(q, s) = q1, δ(q, s′) = q2, ∃i, j ∈ {1, · · · , n},
i 6= j, pEi∩Ej (s), pEi∩Ej (s′) start with
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a ∈ Ei ∩ Ej:
n

||
i=1

Pi (A) ≺ AS(q) (where

A := // • s //

s′
))SSS

SSS •
•

and AS(q) denotes an

automaton that is obtained from AS , starting
from q, and

• DC4: ∀i ∈ {1, ..., n}, x, x1, x2 ∈ Qi, x1 6= x2,
e ∈ Ei, t ∈ E∗i , x1 ∈ δi(x, e), x2 ∈ δi(x, e):
δi(x1, t)!⇔ δi(x2, t)!.

Proof : In order for AS
∼=

n

||
i=1

Pi (AS), from the

definition of bisimulation, it is required to have AS ≺
n

||
i=1

Pi (AS);
n

||
i=1

Pi (AS) ≺ AS , and the simulation

relations are inverse of each other. These requirements
are provided by the following three lemmas.

Firstly,
n

||
i=1

Pi (AS) always simulates AS . For-

mally:

Lemma 1 Consider a deterministic automaton AS =(
Q, q0, E =

n⋃
i=1

Ei, δ

)
and natural projections Pi, i =

1, ..., n. Then, it always holds that AS ≺
n

||
i=1

Pi (AS).

The similarity of
n

||
i=1

Pi (AS) to AS , however,

is not always true (see Example 2), and needs some
conditions as stated in the following lemma.

Lemma 2 Consider a deterministic automaton AS =(
Q, q0, E =

n⋃
i=1

Ei, δ

)
and natural projections Pi, i =

1, ..., n. Then,
n

||
i=1

Pi (AS) ≺ AS if and only if

• DC1: ∀e1, e2 ∈ E, q ∈ Q: [δ(q, e1)! ∧ δ(q, e2)!]
⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆
Ei] ∨ [δ(q, e1e2)! ∧ δ(q, e2e1)!];

• DC2: ∀e1, e2 ∈ E, q ∈ Q, s ∈ E∗:
[δ(q, e1e2s)! ∨ δ(q, e2e1s)!]
⇒ [∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆
Ei] ∨ [δ(q, e1e2s)! ∧ δ(q, e2e1s)!];

• DC3: ∀q, q1, q2 ∈ Q, strings s, s′ over E,
δ(q, s) = q1, δ(q, s′) = q2, ∃i, j ∈ {1, · · · , n},
i 6= j, pEi∩Ej

(s), pEi∩Ej
(s′) start with

a ∈ Ei ∩ Ej:
n

||
i=1

Pi (A) ≺ AS(q) (where

A := // • s //

s′
))SSS

SSS •
•

and AS(q) is an

automaton that is obtained from AS , starting
from q).

Next, we need to show that for two simulation

relations R1 (for AS ≺
n

||
i=1

Pi (AS)) and R2 (for
n

||
i=1

Pi (AS) ≺ AS) defined by the above two lemmas,

R−11 = R2.

Lemma 3 Consider an automaton AS = (Q, q0, E =
E1 ∪ E2, δ) with natural projections Pi, i = 1, ..., n.

If AS is deterministic, AS ≺
n

||
i=1

Pi (AS) with the

simulation relation R1 and
n

||
i=1

Pi (AS) ≺ AS with the

simulation relation R2, then R−11 = R2 (i.e., ∀q ∈ Q,
z ∈ Z: (z, q) ∈ R2 ⇔ (q, z) ∈ R1) if and only if DC4:
∀i ∈ {1, ..., n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈
E∗i , x1 ∈ δi(x, e), x2 ∈ δi(x, e): δi(x1, t)!⇔ δi(x2, t)!.

Now, Theorem 1 is proven as follows. Firstly,
conditions DC1 and DC2 in Theorem 1 are equivalent
to the respective conditions in Lemma 2 due to the
logical equivalences (p ∧ q)⇒ r ≡ q ⇒ (¬p ∨ r) and
p⇔ q ≡ (p ∨ q)⇒ (p ∧ q), for any expressions p and

q. Then, according to Definition 9, AS
∼=

n

||
i=1

Pi (AS) if

and only if AS ≺
n

||
i=1

Pi (AS) (that is always true due to

Lemma 1),
n

||
i=1

Pi (AS) ≺ AS (that it is true if and only

if DC1, DC2 and DC3 are true, according to Lemma
2) and R−11 = R2 (that for a deterministic automaton

AS , when AS ≺
n

||
i=1

Pi (AS) with simulation relation

R1 and
n

||
i=1

Pi (AS) ≺ AS with simulation relation R2,

due to Lemma 3, R−11 = R2 holds true if and only if

DC4 is satisfied). Therefore, AS
∼=

n

||
i=1

Pi (AS) if and

only if DC1, DC2, DC3 and DC4 are satisfied. �

Remark 2 Intuitively, the decomposability condition
DC1 means that for any decision on the selection
between two transitions there should exist at least one
agent that is capable of the decision making, or the
decision should not be important (both permutations in
any order be legal). DC2 says that for any decision
on the order of two successive events before any
string, either there should exist at least one agent
capable of such decision making, or the decision should
not be important, i.e., any order would be legal for
occurrence of that string. The condition DC3 means
that the interleaving of strings from local task automata
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that share the first appearing shared event (pEi∩Ej
(s)

and pEi∩Ej
(s′) start with the same event a ∈ Ei ∩

Ej), should not allow a string that is not allowed
in the original task automaton. In other words, DC3
is to ensure that an illegal behavior (a string that
does not appear in AS) is not allowed by the team

(does not appear in
n

||
i=1

Pi (AS)). The last condition,

DC4, deals with the nondeterminism of local automata.
Here, AS is deterministic, whereas Pi (AS) could be
nondeterministic. DC4 ensures the determinism of
bisimulation quotient of local task automata, in order
to guarantee that the simulation relations from AS to
n

||
i=1

Pi (AS) and vice versa are inverse of each other. By

providing this property, DC4 guarantees that a legal
behavior (appearing in AS) is not disabled by the team

(appears in
n

||
i=1

Pi (AS)).

Example 1 showed a decomposable automaton.
Following example illustrate the automata that are
indecomposable due to violation of one of the
decomposability conditions DC1-DC4, respectively,
although satisfy other three conditions.

Example 2 The automata A1: // •
e2 ))SSS
SSS
e1 //

e3uukkkk
kk •

• •
with

local event sets E1 = {e1, e3}, E2 = {e2}, E3 = {e3};

A2: // •
e2 ))SSS
SSS
e1 // •

e2

�� a // •
• e1 // • a // •

with

E1 = {a, e1}, E2 = {a, e2}; A3:

• e2 // • a // • b // •

// •
e1

OO

e2 ��

a // • b // • e2 // •

• e1 // • a // • b // •

with E1 =

{a, b, e1}, E2 = {a, b, e2}, E3 = {b}, and A4:

• e2 // • b // •
// •

a 55kkkkkk

e1 ))SSS
SSS

• a // • e2 // • b // • e3 // •

with

E = E1 ∪ E2 ∪ E3, E1 = {a, b, e1, e2, e3},
E2 = E3 = {a, b, e2, e3} are not decomposable as
they respectively do not satisfy DC1, DC2, DC3 and
DC4, while fulfill other three conditions.

Remark 3 (Decidability of the conditions) Since this
work deals with finite state automata, the expression s ∈
E∗ in the decomposability conditions can be checked
over finite states as follows.

The first condition DC1 involves no expression
“s ∈ E∗”, and hence, can be checked over the finite
number of states and transitions. According to the
definition, the second condition DC2: ∀e1, e2 ∈
E, q ∈ Q, s ∈ E∗,∀Ei ∈ {E1, ..., En} , {e1, e2} 6⊂ Ei:
δ (q, e1e2s)!⇔ δ (q, e2e1s)!; (or DC2: ∀e1, e2 ∈
E, q ∈ Q, s ∈ E∗: [δ(q, e1e2s)! ∨ δ(q, e2e1s)!]⇒
[∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei] ∨ [δ(q, e1e2s)! ∧
δ(q, e2e1s)!]) can be checked by showing the existence
of a relation R̂2 on the states reachable from δ(q, e1e2)
and δ(q, e2e1) as (δ(q, e1e2), δ(q, e2e1)) ∈ R̂2,
∀(q1, q2) ∈ R̂2, e ∈ E:

1. δ(q1, e) = q′1 ⇒ ∃q′2 ∈ Q, δ(q2, e) = q′2,
(q′1, q

′
2) ∈ R̂2, and

2. δ(q2, e) = q′2 ⇒ ∃q′1 ∈ Q, δ(q1, e) = q′1,
(q′1, q

′
2) ∈ R̂2.

For instance, A2 in Example 2 violates DC2
as (δ(q0, e1e2), δ(q0, e2e1)) ∈ R̂2, ∃e2 ∈ E,
δ(δ(q0, e1e2), e2)!, but ¬δ(δ(q0, e2e1), e2)!.

Checking DC3 also can be done over finite
states by corresponding the pairs of strings s, s′ such
that ∃q, q1, q2 ∈ Q, δ(q, s) = q1, δ(q, s′) = q2, ∃i, j ∈
{1, · · · , n}, i 6= j, pEi∩Ej (s), pEi∩Ej (s′) start with

a ∈ Ei ∩ Ej , and then forming A := // • s //

s′
))SSS

SSS •
•

and AS(q) ( an automaton that is obtained from AS ,

starting from q). and checking
n

||
i=1

Pi (A) ≺ AS(q). For

example, considerA3 in Example 2 and let s1, s2 and s3
denote its strings from top to bottom. This automaton is

not decomposable since
n

||
i=1

Pi (A) ⊀ AS(q0) for A :=

// • s1 //
s2 ))SSS
SSS •
•

. Here, s1 and s2 synchronize on a ∈

E1 ∩ E2 and generate a new string e1abe2 in
n

||
i=1

Pi (A)

that does not appear inAS . The fourth condition (DC4:
∀i ∈ {1, ..., n}, x, x1, x2 ∈ Qi, x1 6= x2, e ∈ Ei, t ∈
E∗i , x1 ∈ δi(x, e), x2 ∈ δi(x, e): δi(x1, t)!⇔ δi(x2, t)!)
also can be checked over finite states, by checking the
existence of a relation R̂4 on the states reachable from
x1 and x2 as (x1, x2) ∈ R̂4, ∀(x3, x4) ∈ R̂4, e ∈ E:

1. x′3 ∈ δi(x3, e)⇒ ∃x′4 ∈ Qi, x′4 ∈ δi(x4, e),
(x′3, x

′
4) ∈ R̂4, and

2. x′4 ∈ δi(x4, e)⇒ ∃x′3 ∈ Qi, x′3 ∈ δi(x3, e),
(x′3, x

′
4) ∈ R̂4.

Definition of this relation is a direct implication
of DC4 that requires identical strings after any
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nondeterministic transition in any local automaton.
For example, the task automaton A4 in Example 2
does not satisfy DC4, as for P2(AS) ∼= P3(AS) ∼=

/.-,()*+y1 e2 // /.-,()*+y2 b // /.-,()*+y3
// /.-,()*+y0

a 55kkkkkk

a ))SSS
SSS /.-,()*+y4 e2 // /.-,()*+y5 b // /.-,()*+y6 e3 // /.-,()*+y7

,

R̂4 = {(y1, y4), (y2, y5), (y3, y6)}, (y3, y6) ∈ R̂4, ∃e3 ∈
E, δ2(y6, e3)!, but ¬δ2(y3, e3)!.

More importantly, the proposed method provides
some guideline on the structure of the global
specification automaton and the distribution the events
among the agents in order for decomposability.

Remark 4 (Insights on enforcing the decomposability
conditions) The result in Theorem 1 provides
us some hints for ruling out indecomposable
task automata and for enforcing the violated
decomposability conditions. For example, if
∃e1, e2 ∈ E, q ∈ Q: [δ(q, e1)! ∧ δ(q, e2)!] but
neither ∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei nor
δ(q, e1e2)! ∧ δ(q, e2e1)!, then AS is not decomposable
due to the violation of DC1. To remove this
violation there should exist an agent with local
event set Ei ∈ {E1, . . . , En} such that {e1, e2} ⊆ Ei.
For instance, For instance, in the automata AS:

// •
e2 ))SSS
SSS
e1 //

e3uukkkk
kk •

• •
with local event sets E1 = {e1, e3},

E2 = {e2}, E3 = {e3}, if E2 = {e1, e2} and
E3 = {e2, e3}, then DC1 was satisfied. This
solution also works for an indecomposability
of AS due to a violation of DC2 where
∃e1, e2 ∈ E, q ∈ Q, s ∈ E∗: δ(q, e1e2s)! ∨ δ(q, e2e1s)!
but neither ∃Ei ∈ {E1, . . . , En}, {e1, e2} ⊆ Ei nor
δ(q, e1e2s)! ∧ δ(q, e2e1s)!. For example, in AS:

// • e1 // • e2 // • e3 // • , with local event sets
E1 = {e1, e3}, E2 = {e2}, E3 = {e3}, again if
E2 = {e1, e2} and E3 = {e2, e3}, then DC1 was
satisfied. Violation of other two conditions, DC3
and DC4, is caused due to synchronization of two
different branches s and s′ from different local task
automata, say Pi(AS) and Pj(AS), on a common
event a ∈ Ei ∩ Ej . This synchronization may impose
an ambiguity in understanding of AS , when Pi(AS)
and Pj(AS) synchronize on a. If one string in Pi(AS)
after synchronization on a, continues to another string
in Pj(AS) and this interleaving generates a new

string in
n

||
i=1

Pi (AS) that does not appear in AS ,

then DC3 is dissatisfied, whereas if this interleaving
causes that a string in AS cannot be completed

in
n

||
i=1

Pi (AS), then DC4 is violated. DC4 can be

also violated due to a nondeterminism on a private
event in a local automaton, which again causes an

ambiguity in the collective task
n

||
i=1

Pi (AS). One way

to remove this ambiguity is therefore by introducing
the first events in s and s′ to both Ei and Ej . In
this case the synchronization on event a will only
occur on the projections of identical strings from
AS and also it avoids the nondeterminism in local
automata. For example, the task automaton AS:

// •
a ��

e1 // • a // •

• e2 //

e3 &&NN
NNN

N • e3 // •

• e2

88pppppp

, with local event sets

E1 = {a, e1, e3} and E2 = {a, e2} satisfies DC1
and DC2, but violates DC3 and DC4, and hence
is not decomposable as the parallel composition

of P1(AS) ∼= // •
a &&NN
NNN

N
e1 // • a // •

• e3 // •

, and

P2(AS) ∼= // •
a ��

a // •

• e2 // •

, is P1(AS)||P2(AS) ∼=

• •aoo
a��

•̌e1oo a //
a��

• e2 //

e3 &&MM
MMM

M • e3 // •

• •e2oo • e3 // • • e2

88qqqqqq

�

AS . Now, inclusion of e1 in E2 leads to

P2(AS) ∼= // •
a &&NN
NNN

N
e1 // • a // •

• e2 // •

and makes

AS decomposable.

Once the task is decomposed into local tasks
and the local controllers are designed for each local
plant, the next question is guaranteeing the global
specification, provided each local closed loop system
satisfies its corresponding local specification.

The cooperative tasking result can be now
presented as follows.

Theorem 2 Consider a plant, represented by a parallel

distributed system
n

‖
i=1

APi
, with given local event sets

Ei, i = 1, ..., n, and let the global specification is given
by a deterministic task automaton AS , with E =

n
∪
i=1
Ei.

Then, designing local controllers ACi , so that ACi ‖
APi
∼= Pi(AS), i = 1, · · · , n, derives the global closed

loop system to satisfy the global specification AS , in

the sense of bisimilarity, i.e.,
n

‖
i=1

(ACi
‖ APi

) ∼= AS ,

provided DC1, DC2, DC3 and DC4 for AS .
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Proof : Following two lemmas are presented to be
used for the proof.

Lemma 4 (Associativity of parallel composition [20])
P1(AS) ‖ P2(AS) ‖ · · · ‖ Pn−1(AS) ‖ Pn(AS) ∼=
Pn(AS) ‖ (Pn−1(AS) ‖ (· · · ‖ (P2(AS) ‖ P1(AS)))).

Lemma 5 [16] If two automata A2 and A4

(bi)simulate, respectively, A1 and A3, then A2 ‖ A4

(bi)simulates A1 ‖ A3, i.e.,

1. (A1 ≺ A2) ∧ (A3 ≺ A4)⇒
(A1 ‖ A3 ≺ A2 ‖ A4);

2. (A1
∼= A2) ∧ (A3

∼= A4)⇒
(A1 ‖ A3

∼= A2 ‖ A4).

Now, satisfying DC1-DC4 for AS , according to
Theorem 1, leads to decomposability of AS into local

task automata Pi(AS), i = 1, ..., n, such that AS
∼=

n

‖
i=1

Pi(AS). Then, choosing local controllers ACi
, so that

ACi
‖ APi

∼= Pi(AS), i = 1, 2, · · · , n, due to Lemma

5.2, results in
n

‖
i=1

(ACi ‖ APi)
∼=

n

‖
i=1

Pi(AS) ∼= AS . �

In the following example, we recall the task
automaton of cooperative multi-robot scenario from
[16] (with the correction of robot indicesR2,R1 andR3

from right to the left), where the global task automaton
has been decomposed into local task automata using
a hierarchical approach as a sufficient condition by
which the decomposability conditions for 2 agents are
successively used for n agents. Here, we decomposeAS

directly using Theorem 1.

Example 3 (Revisiting Example in Section 5 for
decomposability using Theorem 1) Consider a team
of three robots R1, R2 and R3 in Figure 1, initially
in Room 1. All doors are equipped with spring to
be closed automatically, when there is no force to
keep them open. After a help announcement from
Room 2, the Robot R2 is required to go to Room 2,
urgently from the one-way door D2 and accomplish
its task there and come back immediately to Room 1
from the two-way, but heavy door D1 that needs the
cooperation of two robots R1 and R3 to be opened. To
save time, as soon as the robots hear the help request
from Room 2, R2 and R3 go to Rooms 2 and 3, from
D2 and the two-way door D3, respectively, and then
R1 and R3 position on D1, synchronously open D1

and wait for the accomplishment of the task of R2 in
Room 2 and returning to Room 1 (R2 is fast enough).
Afterwards, R1 and R3 move backward to close D1

Fig. 1. The environment of MRS coordination example.

and then R3 returns back to Room 1 from D3. All
robots then stay at Room 1 for the next task [16]. These
requirements can be translated into a task automaton
for the robot team as it is illustrated in Figure 2, defined
over local event sets E1 = {h1, R1toD1, R1onD1,
FWD, D1opened, R2in1, BWD, D1closed, r},
E2 = {h2, R2to2, R2in2, D1opened,R2to1, R2in1, r},
and E3 = {h3, R3to3, R3in3, R3toD1, R3onD1,
FWD, D1opened, R2in1, BWD, D1closed, R3to1,
R3in1, r}, with hi:= Ri received help request,
i = 1, 2, 3; RjtoD1:= command for Rj to position on
D1, j = 1, 3; RjonD1:= Rj has positioned on D1,
j = 1, 3; FWD:= command for moving forward (to
open D1); BWD:= command for moving backward
(to close D1); D1opened:= D1 has been opened;
D1closed:= D1 has been closed; r:= command to go
to initial state for the next implementation; Ritok:=
command for Ri to go to Room k, and Riink:= Ri has
gone to Room k, i = 1, 2, 3, k = 1, 2, 3.

To check the decomposability of AS using
Theorem 1, firstly DC1 and DC2 are satisfied
since for any order/selection on the pairs events,
each from one of the sets {h1, R1toD1, R1onD1} ⊆
E1\{E2 ∪ E3}, {h2, R2to2, R2in2} ⊆ E2\{E1 ∪ E3}
and {h3, R3to3, R3in3, R3toD1, R3onD1} ⊆
E3\{E1 ∪ E2} and also the pairs of event FW ,
paired with events from {h2, R2to2, R2in2}, the
events appear in both orders in the automaton.
The rest of orders/selections on transitions that
are not legal in both orders can be decided by
at least one agent, as {R1onD1, FWD} ⊆ E1,
{R3onD1, FWD} ⊆ E3, {FWD,D1opened} ⊆ E1,
{D1opened,R2to1} ⊆ E2, {R2to1, R2in1} ⊆ E2,
{R2in1, BWD} ⊆ E1, {BWD,D1closed} ⊆ E1,
{D1closed,R3to1} ⊆ E3, {R3to1, R3in1} ⊆ E3,
{R3in1, r} ⊆ E3, {r, h1} ⊆ E1, {r, h2} ⊆ E2,
{r, h3} ⊆ E3. Moreover, since starting from any
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AS :

• r // •̌ h1 //

h2 �� ##H
HH

HH
H •R1toD1//

##H
HH

HH
H •R1onD1//

##H
HH

HH
H •

h3

##H
HH

HH
H

•
R3in1

OO

•
R2to2 �� $$H

HH
HH

H •

�� $$H
HH

HH
H // • //

$$H
HH

HH
H • //

$$H
HH

HH
H •

R3to3

$$H
HH

HH
H

•
R2in2 �� $$H

HH
HH

H •

�� $$H
HH

HH
H • //

�� $$H
HH

HH
H • //

$$H
HH

HH
H • //

$$H
HH

HH
H •

R3in3

$$H
HH

HH
H

•

R3to1

OO

•

$$H
HH

HH
H •

�� $$H
HH

HH
H •

�� $$H
HH

HH
H •

�� $$H
HH

HH
H // • //

$$H
HH

HH
H • //

$$H
HH

HH
H •

R3toD1

$$H
HH

HH
H

•

$$H
HH

HH
H •

�� $$H
HH

HH
H •

�� $$H
HH

HH
H •

��

//

$$H
HH

HH
H • //

$$H
HH

HH
H • //

$$H
HH

HH
H •

R3onD1

$$H
HH

HH
H

•

D1Closed

ddHHHHHHHHHHHHHHH
•

$$H
HH

HH
H •

�� $$H
HH

HH
H •

�� $$H
HH

HH
H •

��

// •

��

// •

��

// •

��
FWD

$$H
HH

HH
H

•

$$H
HH

HH
H •

�� $$H
HH

HH
H •

��

// •

��

// •

��

// •

�� $$H
HH

HH
H •

h2��
•

BWD

ddHHHHHHHHHHHHHHH
•

$$H
HH

HH
H •

��

// •

��

// •

��

// •

�� $$H
HH

HH
H •

R2to2��
• // • // • // •

$$H
HH

HH
H •

R2in2��
•

R2in1

ddHHHHHHHHHHHHHHH
•

R2to1
oo •

D1opened
oo

Fig. 2. Task automaton AS for robot team.

P1(AS): // • h1 // •
R1toD1

// •R1onD1// •
FWD

// •
D1opened// •

R2in1
// • BWD// •

D1closed
// •BCD@A

r

OO

P2(AS): // • h2 // •
R2to2
// •R2in2// •

D1opened
// •R2to1// •

R2in1
// •BCD@A

r

OO

P3(AS): // • h3 // •
R3to3
// •R3in3// •

R3toD1

// •R3onD1// •
FWD
// •
D1opened// •

R2in1
// •BWD// •

D1closed
// •R3to1// •

R3in1
// •BCD@A

r

OO

Fig. 3. P1(AS) for R1; P2(AS) for R2 and P3(AS) for R3.

state, each shared event e ∈ {FWD,D1opened,

R2in1, BWD,D1closed, r} appears in only one
branch, DC3 is satisfied. Furthermore, DC4 is also
satisfied since Pi(AS), i = 1, 2, 3 are deterministic
automata. Therefore, according to Theorem 1, AS is
decomposable into Pi(AS), i = 1, 2, 3, as illustrated in
Figure 3, bisimulates AS .

Choosing local controllers ACi
:= Pi(AS) leads

to ACi
‖ APi

∼= Pi(AS), i = 1, 2, 3 that according to

Theorem 2 results in
n

‖
i=1

(ACi ‖ APi)
∼=

n

‖
i=1

Pi(AS) ∼=

AS , i.e., the team of controlled robots collectively
satisfy the global specification AS . The scenario has

been successfully implemented on a team of three
ground robots.

IV. CONCLUSION

The paper proposed a formal method for
automaton decomposability, applicable in top-down
decentralized cooperative control of distributed discrete
event systems. Given a set of agents whose logical
behaviors are modeled in a parallel distributed system,
and a global task automaton, the paper has the
following contributions: firstly, we provide necessary
and sufficient conditions for decomposability of an
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automaton with respect to parallel composition and
natural projections into an arbitrary finite number of
local event sets, and secondly, it has been shown that if
a global task automaton is decomposed for individual
agents, designing a local supervisor for each agent,
satisfying its local task, guarantees that the closed
loop system of the team of agents satisfies the global
specification.

The proposed decomposability conditions can be
applied to the discrete event systems in which all states
are marked. The example of such systems include the
manufacturing machines with routine tasks, execution
of PLC (programmable Logic Controller) systems that
the subroutines are visited iteratively, and any other
such systems that all states of the system should be
visited and hence can be attributed to marked states.
Therefore, future works include the extension of the
results for the class of systems with only some of
the states as marked states. For this purpose new
decomposability conditions have to be developed such
that the composition of local automata preserves the
marked states of the global task automaton. Other
interesting directions on this topic are the fault-tolerant
task decomposition in spite of failure in some events,
and decomposabilizability of an indecomposable task
automaton by modifying the event distribution.

Appendix A. Definitions

This part provides some definitions to be used
during the proofs of the lemmas in the Appendix.
Firstly, we successive event pair and adjacent event pair
are defined as follows.

Definition 11 (Successive event pair) Two events e1
and e2 are called successive events if ∃q ∈ Q :
δ(q, e1)! ∧ δ(δ(q, e1), e2)! or δ(q, e2)! ∧ δ(δ(q, e2), e1)!.

Definition 12 (Adjacent event pair) Two events e1 and
e2 are called adjacent events if ∃q ∈ Q : δ(q, e1)! ∧
δ(q, e2)!.

We will also use synchronized product of
languages in the following section, defined as follows.

Definition 13 (Synchronized product of languages
[23]) Consider a global event set E and local event sets
Ei, i = 1, . . . , n, such that E =

n
∪
i=1
Ei. For a finite set

of languages {Li ⊆ E∗i }ni=1, the synchronized product

(product language) of {Li}, denoted by
n

|
i=1

Li, is

defined as
n

|
i=1

Li = {s ∈ E∗|∀i ∈ {1, . . . , n} : pi(s) ∈

Li} =
n
∩
i=1
p−1i (Li).

Remark 5 Using the product language, it is then possi-
ble to characterize the language of parallel composition
of two automata A1 and A2, with respective event sets
E1 andE2, in terms of their languages, as L(A1||A2) =
L(A1)|L(A2) = p−11 (L(A1)) ∩ p−12 (L(A2)) with pi :
(E1 ∪ E2)∗ → E∗i , i = 1, 2 [23]. Accordingly, the
interleaving of two strings is defined as the product
language to their respective automata as follows.
Let A1 = ({q1, ..., qn}, {q1}, E1 = {e1, ..., en}, δ1) and
A2 = ({q′1, ..., q′m}, {q′1}, E2 = {e′1, ..., e′m}, δ2) denote
path automata (automata with only one branch) q1

e1→

q2
e2→ ...

en→ qn and q′1
e′1→ q′2

e′2→ ...
e′m→ q′m, respectively.

Then, L(A1||A2) = s̄|s̄′ = p−11 (s̄) ∩ p−12 (s̄′) with s =
e1, ..., en, s′ = e′1, ..., e

′
m and pi : (E1 ∪ E2)∗ → E∗i ,

i = 1, 2. Here, s denotes the prefix-closure of an string,
defined as the set of all prefixes of the string. Formally,
if s is the event sequence s := e1e2...en, then s :=
{ε, e1, e1e2, ..., e1e2...en}.

Example 4 Consider three strings s1 = e1a, s2 = ae2
and s3 = ae1. Then the interleaving of s1 and s2 is
s1|s2 = e1ae2 while the interleaving of two strings s2
and s3 becomes s2|s3 = {ae1e2, ae2e1}.

Appendix B. Proof for Lemma 1

Recalling Lemma 1 in [16], stating
that for a deterministic automaton
AS = (Q, q0, E = E1 ∪ E2, δ), AS ≺
P1(AS)||P2(AS), it leads to P n

∪
i=m

Ei
(AS) ≺

Pm(AS)||P n
∪

i=m+1
Ei

(AS), m = 1, . . . , n− 1,

for AS = (Q, q0, E =
n
∪
i=1

Ei, δ). Therefore,

AS
∼= P n

∪
i=1

Ei
(AS) ≺ P1(AS)||P n

∪
i=2

Ei
(AS) ≺

P1(AS)||P2(AS)||P n
∪

i=3
Ei

(AS) ≺ . . . ≺
n

||
i=1

Pi(AS).

Appendix C. Proof for Lemma 2

Sufficiency: Consider the deterministic
automaton AS = (Q, q0, E, δ). The set of transitions in
n

||
i=1

Pi(AS) = (Z, z0, E, δ||) is defined as T = {z0 :=
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(x10, · · · , xn0 )

n

|
i=1

pi(si)

−→ z := (x1, · · · , xn) ∈ Z :=

n∏
i=1

Qi}, where, (x10, · · · , xn0 )

n

|
i=1

pi(si)

−→ (x1, · · · , xn) in
n

||
i=1

Pi(AS) is the interleaving of strings xi0
pi(si)−→ xi in

Pi(AS), i = 1, · · · , n (projections of q0
si−→ δ(q0, si)

in AS . Let L̃ (AS) ⊆ L (AS) denote the largest subset
of L (AS) such that ∀s ∈ L̃ (AS) ,∃s′ ∈ L̃ (AS),
∃Ei, Ej ∈ {E1, ..., En} , i 6= j, pEi∩Ej

(s) and
pEi∩Ej

(s′) start with the same event. Then, T can
be divided into three sets of transitions corresponding
to a division of {Γ1,Γ2,Γ3} on the set of interleaving

strings Γ = {
n

|
i=1

pi(si)|si ∈ E∗, q0
si−→ δ(q0, si)},

where, Γ1 = {
n

|
i=1

pi(si) ∈ Γ|s1, · · · , sn /∈ L̃(AS), s1 =

· · · = sn}, Γ2 = {
n

|
i=1

pi(si) ∈ Γ|s1, · · · , sn /∈

L̃(AS),∃si, sj ∈ {s1, · · · , sn}, si 6= sj , }, Γ3 =

{
n

|
i=1

pi(si) ∈ Γ|si ∈ L̃(AS)}. Moreover, since

AS is deterministic,
n

||
i=1

Pi(AS) ≺ AS is reduced

to δ(q0,
n

|
i=1

pi(s))! in AS for transitions in Γ.
n

||
i=1

Pi(AS) ≺ AS .

Thus, defining a relation R as (z0, q0) ∈ R, R :=
{(z, q) ∈ Z ×Q|∃t ∈ E∗, z ∈ δ||(z0, t)}, the aim is to

show that R is a simulation relation from
n

||
i=1

Pi(AS)

to AS .
For the interleavings in Γ1, ∀z, z1 ∈ Z, e ∈ E,

z1 ∈ δ||(z, e): ∃q, q1 ∈ Q, δ(q, e) = q1 such that ∀z[j] ∈
{z[1], · · · , z[n]} (the j − th component of z), ∃l ∈
loc(e), z[j] = [q]l. Similarly, ∀e′ ∈ E, z2 ∈ Z, z2 ∈
δ||(z1, e

′): ∃q2 ∈ Q, δ(q1, e
′) = q2. Now, if @Ei ∈

{E1, · · · , En}, {e, e′} ∈ Ei, then the definition of
parallel composition will furthermore induce that ∃z3 ∈
Z, z3 ∈ δ||(z, e′), z2 ∈ δ||(z3, e). This, together with
DC1 and DC2 implies that ∃q3, q4 ∈ Q, δ(q, e′) = q3,
δ(q3, e) = q4 and that ∀t ∈ E∗, δ||(z2, t)!: δ(q2, t)! and

δ(q4, t)!. Therefore, any path automaton in
n

||
i=1

Pi(AS)

is simulated by AS , and hence, δ(q0,
n

|
i=1

pi(s))! in AS ,

∀s ∈ L(AS).
For the interleavings in Γ2, from the definition

of Γ2, it follows that for any set of si, δ(q0, si)!, i ∈
{1, · · · , n}, two cases are possible for Γ2:

Case 1: ∀s, s′ ∈ {s1, · · · , sn}, ∀Ei, Ej ∈
{E1, · · · , En}: pEi∩Ej (s) = ε and pEi∩Ej (s′) = ε.
In this case, projections of such strings si can
be written as pi(si) = ei1, · · · , eimi

, i = 1, · · · , n.
The interleaving of these projected strings leads

to a grid of states and transitions in
n∏

i=1

mi∏
ji=0

xiji

as (xi1j1 , · · · , x
in
jn

)
eij−→ (yi1j1 , · · · , y

in
jn

), with yikji ={
xikji+1

, if i = ik, j = ji + 1

xikji , otherwise
ji = 0, 1, · · · ,mi,

i = 1, · · · , n, ik = 1, · · · , n, k = 1, · · · , n. This
grid of transitions is simulated by counterpart
transitions in AS , as ∀s, s′ ∈ {s1, · · · , sn}, for any
two successive/adjacent events eij and ei

′

j′ , both orders
exist in AS , due to DC1 and DC2, and hence,
δ(qji,ik , e

k
j ) = q′ji,ik , ji = 0, 1, · · · ,mi, i = 1, · · · , n,

ik = 1, · · · , n, k = 1, · · · , n. Therefore, for any choice

of si corresponding to Γ2, δ(q0,
n

|
i=1

pi(si))! in AS .

Case 2: ∃s, s′ ∈ {s1, · · · , sn}, ∃Ei, Ej ∈
{E1, · · · , En}: pEi∩Ej (s) 6= ε or pEi∩Ej (s′) 6= ε,
but they do not start with the same event.
Any such s and s′ can be written as s = t1at2
and s′ = t′1bt

′
2, where t1 = e1 · · · em, t′1 =

e′1 · · · e′m′ /∈ (Ei ∩ Ej)
∗,∀i, j ∈ {1, · · · , n}, i 6= j,

∃i, j ∈ {1, · · · , n}, i 6= j, a, b ∈ Ei ∩ Ej , t2, t
′
2 ∈ E∗.

Therefore, due to synchronization constraint, the
interleaving of strings will not evolve from a and b
onwards, and hence, pi(s)|pj(s′) = pi(t1)|pj(t′1) and
pi(s′)|pj(s) = pi(t′1)|pj(t1), and Case 2 is reduced to

Case 1, leading to δ(q0,
n

|
i=1

pi(si))! in AS .

Furthermore, due to DC3, for any two distinct
strings s, s′ ∈ L̃(AS) (i.e., two strings starting from
state q in AS that ∃Ei, Ej ∈ {E1, ..., En}, i 6= j,
pEi∩Ej

(s), pEi∩Ej
(s′) start with the same event a ∈

Ei ∩ Ej) we have
n

||
i=1

Pi (A) ≺ AS(q) (where A :=

// • s //

s′
))SSS

SSS •
•

and AS(q) denotes an automaton

that is obtained from AS , starting from q). This is
particularly true for q = q0. Therefore, DC3 implies
that for the pair of strings s, s′ (over the transitions in

Γ3), and corresponding automaton A, L(
n

||
i=1

Pi (A)) ⊆

L(AS), that from the definition of synchronized
product means that

n
∩
i=1
p−1i ({s̄, s̄′}) ⊆ L(AS). For any

pair of s′, s′′ ∈ L̄(AS) also DC3 similarly results
in

n
∩
i=1
p−1i ({s̄′, s̄′′}) ⊆ L(AS), that collectively results
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in
n
∩
i=1
p−1i ({s̄, s̄′, s̄′′}) ⊆ L(AS), due to the following

lemma:

Lemma 6 [20] For any two languages L1, L2 defined
over an event set E and a natural projection p : E∗ →
E∗i , for Ei ⊆ E: pi(L1 ∪ L2) = pi(L1) ∪ pi(L2) and
p−1i (L1 ∪ L2) = p−1i (L1) ∪ p−1i (L2).

This, inductively means that for {s1 · · · , sm} ⊆ L̃(AS):
n
∩
i=1
p−1i ({si}mi=1) ⊆ L(AS), i.e., δ(q0,

n

|
i=1

pi(si))! in AS ,

for transitions in Γ3.
Therefore, DC3 implies that all transitions in Γ

are simulated by transitions in AS that because of the

determinism of AS results in
n

||
i=1

Pi (AS) ≺ AS .

Necessity: The necessity is proven by contradic-

tion. Assume that
n

||
i=1

Pi(AS) ≺ AS , but DC1, DC2 or

DC3 is not satisfied.
If DC1 is violated, then ∃e1, e2 ∈ E,

q ∈ Q, @Ei ∈ {E1, · · · , En}, {e1, e2} ⊆ Ei,
[δ(q, e1)! ∧ δ(q, e2)!] ∧ ¬[δ(q, e1e2)! ∧ δ(q, e2e1)!].
However, δ(q, e1)! ∧ δ(q, e2)!, from the definition
of natural projection, implies that δi([q]i, e1)! ∧
δj([q]j , e2)!, in Pi(AS) and Pj(AS), respectively,
∀i ∈ loc(e1), j ∈ loc(e2). This in turn, from definition
of parallel composition leads to δ||(([q]1, · · · , [q]n),
e1)! ∧ δ||(([q]1, · · · , [q]n), e2)! and
δ||(([q]1, · · · , [q]n), e1e2)! ∧ δ||(([q]1, · · · , [q]n), e2e1)!.
This means that δ||(([q]1, · · · , [q]n), e1e2)! ∧

δ||(([q]1, · · · , [q]n), e2e1)! in
n

||
i=1

Pi(AS), but

¬[δ(q, e1e2)! ∧ δ(q, e2e1)!] in AS , i.e.,
n

||
i=1

Pi(AS) ⊀

AS which contradicts with the hypothesis.
If DC2 is not satisfied, then ∃e1, e2 ∈ E,

q ∈ Q, @Ei ∈ {E1, · · · , En}, {e1, e2} ⊆ Ei,
s ∈ E∗, ¬[δ(q, e1e2s)!⇔ δ(q, e2e1s)!], i.e.,
[δ(q, e1e2s)! ∨ δ(q, e2e1s)!] ∧ ¬[δ(q, e1e2s)! ∧ δ(q,
e2e1s)!]. The expression [δ(q, e1e2s)! ∨ δ(q, e2e1s)!]
from definition of natural projection and
Lemma 1, respectively implies that δ||(([q]1,
· · · , [q]n), e1e2)! ∧ δ||(([q]1,· · · , [q]n), e2e1)! and
δ||(([q]1,· · · , [q]n), e1e2s)! ∧ δ||(([q]1,· · · , [q]n), e2e1s)!

in
n

||
i=1

Pi(AS). This in turn leads to

δ||(([q]1, · · · , [q]n), e1e2s)! ∧ δ||(([q]1, · · · , [q]n),

e2e1s)! in
n

||
i=1

Pi(AS), but ¬[δ(q, e1e2s)! ∧

δ(q, e2e1s)!] in AS , that contradicts with
n

||
i=1

Pi(AS) ≺ AS .

The violation of DC3 also leads to
contradiction as δ(q0, si)!, i = 1, · · · , n, results in

δ||(([q0]1, · · · [q0]n),
n

|
i=1

pi(si))! in
n

||
i=1

Pi(AS), whereas

¬δ(q0,
n

|
i=1

pi(si))! in AS .

Appendix D. Proof for Lemma 3

Sufficiency: Following two lemmas are used in
the proof of Lemma 3.

Lemma 7 (Lemma 9 in [16]) Consider two automata
A1 and A2, and let A1 be deterministic, A1 ≺ A2

with the simulation relation R1 and A2 ≺ A1 with the
simulation relation R2. Then, R−11 = R2 if and only
if there exists a deterministic automaton A′1 such that
A′1
∼= A2.

Next, let A1 and A2 be substituted by AS and
n

||
i=1

Pi(AS), respectively, in Lemma 7. Then, the

existence of A′1 = A′S in Lemma 7 is characterized by
the following lemma.

Lemma 8 Consider a deterministic automatonAS and
its natural projections Pi(AS), i = 1, · · · , n. Then,
there exists a deterministic automaton A′S such that

A′S
∼=

n

||
i=1

Pi(AS) if and only if there exist deterministic

automata P ′i (AS) such that P ′i (AS) ∼= Pi(AS), i =
1, · · · , n.

Proof : Let AS = (Q, q0, E =
n
∪
i=1

Ei, δ),

Pi(AS) = (Qi, q
i
0, Ei, δi), P ′i (AS) = (Q′i, q

′
0,i, Ei, δ

′
i),

i = 1, · · · , n,
n

||
i=1

Pi(AS) = (Z, z0, E, δ||),
n

||
i=1

P ′i (AS) = (Z ′, z′0, E, δ
′
||). Then, the proof of

Lemma 8 is presented as follows.
Sufficiency: The existence of deterministic

automata P ′i (AS) such that P ′i (AS) ∼= Pi(AS), i =
1, · · · , n implies that δ′i, i = 1, · · · , n are functions, and
consequently from definition of parallel composition

(Definition 8), δ′|| is a function, and hence
n

||
i=1

P ′i (AS)

is deterministic. Moreover, from Lemma 5, P ′i (AS) ∼=
Pi(AS), i = 1, · · · , n lead to

n

||
i=1

P ′i (AS) ∼=
n

||
i=1

Pi(AS),

meaning that there exists a deterministic automaton

A′S :=
n

||
i=1

P ′i (AS) such that A′S ∼=
n

||
i=1

Pi(AS).
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Necessity: The necessity is proven by contrapo-
sition, namely, by showing that if there does not exist
deterministic automata P ′i (AS) such that P ′i (AS) ∼=
Pi(AS), for i = 1, 2, · · · , or n, then there does not
exist a deterministic automaton A′S such that A′S ∼=
n

||
i=1

Pi(AS).

Without loss of generality, assume that there does
not exist a deterministic automaton P ′1(AS) such that
P ′1(AS) ∼= P1(AS). This means that ∃q, q1, q2 ∈ Q,
e ∈ E1, t1, t2 ∈ (E\E1)∗, t ∈ E∗, δ(q, t1e) = q1,
δ(q, t2e) = q2, ¬[δ(q1, t)!⇔ δ(q2, t)!], meaning
that δ(q1, t)! ∧ ¬δ(q2, t)! or ¬δ(q1, t)! ∧ δ(q2, t)!.
Again without loss of generality we consider the
first case and show that it leads to a contradiction.
The contradiction of the second case is followed,
similarly. From the first case, δ(q1, t)! ∧ ¬δ(q2, t)!,
definition of natural projection, definitions of parallel
composition and Lemma 1 it follows that ([q1]1,
([q1]2, . . ., [q1]n)) ∈ δ||(([q]1, ([q]2, . . . , [q]n)), t1e),
([q2]1, ([q1]2, . . ., [q1]n)) ∈ δ||(([q]1, ([q]2, . . .,
[q]n)), t1e), δ(([q1]1, ([q1]2, . . ., [q1]n)), t)!, whereas

¬δ(([q2]1, ([q1]2, . . . , [q1]n)), t)! in
n

||
j=1

Pi(AS),

implying that there does not exist a deterministic

automaton A′S such that A′S ∼=
n

||
j=1

Pi(AS), and the

necessity is followed. �
Now, Lemma 3 is proven as follows.
Sufficiency: DC4 implies that there exist

deterministic automata P ′i (AS) such that P ′i (AS) ∼=
Pi(AS), i = 1, · · · , n. Then, from Lemmas 5 and 8,

it follows, respectively, that
n

||
i=1

P ′i (AS) ∼=
n

||
i=1

Pi(AS),

and that there exists a deterministic automaton A′S :=
n

||
i=1

P ′i (AS) such that A′S
∼=

n

||
i=1

Pi(AS) that due to

Lemma 7, it results in R−11 = R2.
Necessity: Let AS be deterministic, AS ≺

n

||
i=1

Pi(AS) with the simulation relation R1 and
n

||
i=1

Pi(AS) ≺ AS with the simulation relation R2,

and assume by contradiction that R−11 = R2, but
DC4 is not satisfied. Violation of DC4 implies
that for ∃i ∈ {1, · · · , n}, there does not exists a
deterministic automaton P ′i (AS) such that P ′i (AS) ∼=
Pi(AS). Therefore, due to Lemma 8, there does not
exist a deterministic automaton A′S such that A′S ∼=
n

||
i=1

Pi(AS), and hence, according to Lemma 7, it leads

to R−11 6= R2 which is a contradiction.
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