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Abstract: Estimation of transmission delays caused by wireless communication and analysis of the delay 

effects is one of the critical challenges to be considered in designing controllers for quadrotor types of 

unmanned aerial vehicles (UAVs). This paper presents an estimation method using experimental data and 

analytical solutions of delay differential equations (DDEs). For the approach, measured transient altitude 

responses are compared to time-domain descriptions obtained from the analytical solutions. That makes 

use of the Lambert W function for first-order DDEs. The dominant characteristic roots are obtained in 

terms of system parameters including the delay. Proportional controllers are used to generate the altitude 

responses for estimation. The effects of the time delay on the responses are analyzed. Then, proportional 

plus velocity controllers are designed to obtain better transient altitude responses. MATLAB/Simulink is 

used for simulations, experiments, and analytical solutions of the DDEs in terms of Lambert W function. 
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1. INTRODUCTION 

Estimating and analyzing time delays in dynamic systems is 

an important issue in many applications. Estimating delays is 

a challenging problem and has been an area of great research 

interest in fields as diverse as radar, sonar, seismology, 

geophysics, ultrasonic, controls, and communications (Kobra 

et al., 2013; Ren, 2005). Although considerable efforts have 

been made on parameter estimation, there are still many open 

problems in time-delay identification due to difficulty in 

formulation (Yi et al., 2012; Belkoura et al., 2009; Richard, 

2003).  

Autonomous control of quadrotor types of unmanned aerial 

vehicles (UAVs) has been the focus of active research during 

the past decades. One of the challenges in designing effective 

control systems for UAVs is existence of signal transmission 

delay, which has nonlinear effects on the flight performance of 

autonomously controlled UAVs. A controller designed using a 

non-delay system model may result in disappointingly slow 

and oscillating responses due to the delays. For large delays 

(e.g., larger than 0.20𝑠) the system response might not be 

stabilized or converged due to increased torque, and this poses 

a significant challenge (Ailon and Arogeti, 2014).  

Parrot AR.Drone 2.0 is a UAV controlled through Wi-Fi and, 

thus, its dynamics contains a time delay. Refer to Section 2 for 

the control architecture. The time delay is attributed to: (1) the 

processing capability of the host computer, (2) the electronic 

devices processing the motion signals, (3) the measurement 

reading devices, e.g., the distance between the ultrasonic 

sensor, for reading the altitude, and the surface can affect the 

delay, and (4) the software, on the host computer, being used 

to implement the controllers, etc. For UAVs wireless 

communication delays may not be critical when the controllers 

are on-board. However, delays have significant effects when 

the control software is run on an external computer and signals 

are transmitted wireless. For example, the experiments on the 

drone in this paper were conducted using MATLAB/Simulink 

on an external computer, and the navigation data (yaw, pitch, 

roll, altitude, etc.) decoding process contributes to the delay. 

Also, the different types of numerical solvers introduces delay. 

This paper presents how to estimate the constant time delay in 

AR.Drone 2.0 altitude control system. In real applications, 

drones fly around and the time delay may vary. The altitude 

dynamics is assumed to be linear time-invariant (LTI) first-

order, and the time delay is incorporated into the model as an 

explicit parameter. Here, the delay is not restricted to be a 

multiple of the sampling interval. In this brief, experimental 

data and analytical solutions of infinite-dimensional 

continuous delay differential equations (DDEs) are used. In 

Butcher and Torkamani, the finite-dimensional continuous 

time approximation (CTA) was used to approximately solve 

DDEs for estimation of constant and time-varying delays. The 

accuracy is dependent on the size of the Chebyshev spectral 

differentiation matrix.  

For the approach in this paper, measured transient responses 

are compared to time-domain descriptions obtained by using 

the Lambert W function. Then, the dominant characteristic 

roots are obtained in terms of system parameters including the 

delay. Proportional (P) controllers are used to generate the 

responses for estimation. The effects of the time delay on the 

responses are analyzed. Then, proportional plus velocity (PV) 

control is designed to obtain better transient responses.  

This paper continues with a description of quadrotor’s altitude 

model and the AR.Drone 2.0 control system in Section 2. 

Section 3 presents the approaches used for estimating the 

system’s time delay. In Section 4, the P and PV controllers are 

presented. In Section 5 results are summarized. Concluding 

remarks and future work is presented in Section 6. 
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2. ALTITUDE MODEL AND CONTROL SYSTEM 

Quadrotors are typically modeled based on three coordinate 

systems attached to it; the body-fixed frame, vehicle frame, 

and global inertial frame. They have six degrees-of-freedom in 

terms of position and the attitude defined using the Euler 

angles (Corke, 2011). The quadrotor has four rotors, labelled 

1 to 4, mounted at the end of each cross arm. The rotors are 

driven by electric motors powered by electronic speed 

controllers. The vehicle’s total mass is 𝑚 and  𝑑 is distance 

from the motor to the center of mass. The total upward 

thrust, 𝑇(𝑡), on the vehicle is given by 

                                     𝑇(𝑡) =  ∑ 𝑇𝑖

𝑖=4

𝑖=1

(𝑡)                                     (1) 

where 𝑇𝑖(𝑡) = 𝑎𝜔𝑖
2(𝑡),   𝑖 = 1, 2,3,4, 𝜔𝑖(𝑡) is the rotor speed, 

𝑎 > 0 is the thrust constant, and 𝑡 is time (Corke, 2011). The 

equation of motion in the z-direction can be obtain as (Randal, 

2008) 

                                𝑧̈(𝑡) =
4a𝜔2(𝑡)

𝑚
 − 𝑔                                   (2) 

where 𝜔(𝑡) is the rotor average angular speed necessary to 

generate 𝑇(𝑡) and 𝑔 is the gravitational acceleration. Thus, to 

control the altitude, 𝑧(𝑡), of the quadrotor only 𝜔(𝑡) needs to 

be varied, since 𝑚, 𝑎, and 𝑔 are constants. 

According to the AR.Drone 2.0 SDK documentation, 𝑧(𝑡) is 

controlled by applying a reference vertical speed, 𝑧̇𝑟𝑒𝑓(𝑡), as 

control input. 𝑧̇𝑟𝑒𝑓(𝑡) has to be constrained to [−1  1]𝑚𝑠−1, to 

prevent damage. The drone’s flight management system 

sampling time, 𝑇𝑠 is 0.065𝑠, which is also the sampling time 

at which the control law is executed and the navigation data 

received.  

 

Fig. 1: Diagram for altitude control of the AR.Drone 2.0. 

The setup to control the drone’s altitude motion using 

MATLAB/Simulink program is shown in Fig. 1. The error 

between the desired reference input, 𝑧𝑑𝑒𝑠(𝑡), and the system 

altitude response, 𝑧(𝑡), is denoted as 𝑒(𝑡). The altitude motion 

dynamics in (2) is used to determine 𝜔(𝑡) from 𝑧̇(𝑡), which is 

obtained from 𝑧̇𝑟𝑒𝑓(𝑡). The rotors rotate with the same 𝜔(𝑡), 

which will generate 𝑇(𝑡) to produce 𝑧(𝑡). These computations 

take place on-board the drone control engine program written 

in C. In this paper, the motor dynamics is assumed to be very 

fast such that the altitude control system can be represented as 

a first-order system using an integrator (Fig. 1). Under such 

assumption, the control input, 𝑧̇𝑎𝑝𝑝(𝑡), to the first-order system 

is approximated to be equal to the actual vertical speed, 𝑧̇(𝑡), 

of the drone. Thus, a first-order model is used for the analytical 

determination of the time delay and for obtaining the 

simulation altitude responses. 

The MATLAB/Simulink program setup developed for the 

experiments is shown in Fig. 2. The vertical speed control 

input constraints are applied using the saturation block. For the 

simulations, the overall constant time delay, 𝑇𝑑, in the system 

is represented as actuator time delay, and it is implemented 

using the transport delay block. 

The experiments were performed in an office environment, 

with the AR.Drone 2.0 indoor hull attached. The drone is 

connected to the host PC using Wi-Fi, and data streaming, 

sending and receiving, are made possible using UDPs (user 

datagram protocols). UDP is a communication protocol, an 

alternative to TCP that offers a limited amount of service when 

messages are exchange between computers in a network that 

uses IP. 

The drone navigation data (from the sensors, cameras, battery, 

etc.) are received, and the control signals are sent, using AT 

commands. AT commands are combination of short text strings 

sent to the drone to control its actions. The drone has 

ultrasound sensor for ground altitude measurement (at the 

bottom). It has 1GHz 32 bit ARM Cortex A8 processor, 1GB 

DDR2 RAM at 200MHz, and USB 2.0 high speed for 

extensions. 

 

Fig. 2: Simulink diagram for controlling the AR.Drone 2.0. 

3. TIME-DELAY ESTIMATION 

A continuous control system can be represented for time-delay 

estimation (TDE) as (Svante, 2003) 

                            𝑧(𝑡) = 𝐺𝑝𝑢(𝑡 − 𝑇𝑑) +  𝑛(𝑡)                          (3) 

where 𝐺𝑝 is an LTI dynamic system, single-input-single-

output (SISO), 𝑧(𝑡) is measured signal, 𝑢(𝑡) is the control 

input signal, and 𝑛(𝑡) is measurement noise (here, 𝑛(𝑡) = 0). 

The time delay to be estimated is an explicit parameter in the 

model and it is not restricted to be a multiple of the sampling 

time. The estimation problem can be formulated using 

analytical solutions to DDEs. Consider the first-order scalar 

homogenous DDE shown in (4) below. Unlike ordinary 

differential equations (ODEs), two initial conditions need to 

1

𝑠
 

− 

+ 

𝑧(𝑡) 𝑧̇𝑎𝑝𝑝(𝑡) 

𝑧𝑑𝑒𝑠(𝑡) 

[−1  1] 

𝐀𝐑. 𝐃𝐫𝐨𝐧𝐞 𝟐. 𝟎 𝐰𝐢𝐭𝐡 𝐭𝐡𝐞 𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞𝐝 𝟏𝐬𝐭 𝐎𝐫𝐝𝐞𝐫 𝐒𝐲𝐬𝐭𝐞𝐦 

𝑧̇𝑟𝑒𝑓(𝑡) 

𝐀𝐑. 𝐃𝐫𝐨𝐧𝐞 𝟐. 𝟎 𝟏𝐬𝐭 𝐎𝐫𝐝𝐞𝐫 𝐒𝐲𝐬𝐭𝐞𝐦 

Controller 

MATLAB/Simulink Program 

𝑒(𝑡) 
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be specified for DDEs: a preshape function, 𝑔(𝑡), for −𝑇𝑑 ≤
𝑡 < 0, and initial point, 𝑧𝑜, at 𝑡 =  0.  

                    𝑧̇(𝑡) − 𝑎𝑜𝑧(𝑡) − 𝑎1𝑧(𝑡 – 𝑇𝑑) = 0                   (4) 

The characteristic equation of (4) is given by 

                             𝑠 − 𝑎𝑜 −  𝑎1𝑒−𝑠𝑇𝑑 = 0                              (5) 

Then, the characteristic equation in (5) is solved as (Yi et al., 

2012) 

                            𝑠 =
1

𝑇𝑑

𝑊(𝑇𝑑𝑎1𝑒−𝑎𝑜𝑇𝑑) + 𝑎𝑜                         (6) 

The Lambert W function is defined as 𝑊(𝑥)𝑒𝑊(𝑥) =
𝑥 (Corless et al., 1996).  As seen in (6), the characteristic root, 

𝑠, is obtained analytically in terms of parameters, 𝑎𝑜, 𝑎1, and 

𝑇𝑑. The solution in (6) has an analytical form expressed in 

terms of the parameters of the DDE in (4). One can explicitly 

determine how the time delay is involved in the solution and, 

furthermore, how each parameter affects each characteristic 

root. That enables one to formulate estimation of time delays 

in an analytic way. Each eigenvalue can be distinguished with 

the branches of the Lambert W function, which is already 

embedded in MATLAB (Yi et al., 2012). 

For first-order scalar DDEs, it has been proved that the 

rightmost characteristic roots are always obtained by using the 

principal branch, 𝑘 =  0, and/or 𝑘 =  −1 (Shinozaki and 

Mori, 2006). For the DDE in (4), one has to consider two 

possible cases for rightmost characteristic roots: characteristic 

equations of DDEs as in (5) can have one real dominant root 

or two complex conjugate dominant roots. Thus, when 

estimating time delays using characteristic roots, it is required 

to decide whether it is the former or the latter (Yi et al., 2012). 

For ODEs, an estimation technique using the logarithmic 

decrement provides an effective way to estimate the damping 

ratio,  (Palm, 2010). The technique makes use of the form 

                                 𝑠 = −𝜔𝑛 ± 𝑗𝜔𝑛√1 − 2                          (7) 

for obtaining 𝑠 of second-order ODEs. The variables  and 𝜔𝑛 

are obtained from the response of the system, and different 

approaches can be applied depending on the nature of the 

response, oscillatory and non-oscillatory (Yi et al., 2012). 

Here, the transient properties for oscillatory responses are 

used. Properties such as the maximum overshoot, 𝑀𝑜, peak 

time, 𝑡𝑝, and settling time, 𝑡𝑠, are related to  and 𝜔𝑛, as shown 

below (Palm, 2010) 

   𝑀𝑜 = 100𝑒
(

−𝜋

√(1−2)
)

, 𝑡𝑝 =
𝜋

𝜔𝑛√(1 − 2)
 ,   𝑡𝑠 =

4

𝜔𝑛

      (8) 

Then, the drone control system with the unknown 𝑇𝑑, is 

estimated by the following steps: 

Step 1: Calculate  and 𝜔𝑛 based on the system altitude 

response 

Step 2: Calculate the ‘dominant’ roots using 𝑠 = −𝜔𝑛 ±

𝑗𝜔𝑛√(1 − 2) 

Step 3: Solve the nonlinear equation 𝑠 =
1

𝑇𝑑
𝑊(𝑇𝑑𝑎1𝑒−𝑎𝑜𝑇𝑑) + 𝑎𝑜 for 𝑇𝑑 

The equation in Step 3 can be solved using nonlinear solver 

such as fsolve in MATLAB. 

For comparison, numerical approach is also used. In this 

approach the transient properties, 𝑀𝑜 and 𝑡𝑝, of the drone’s 

altitude responses are compared to those of simulation 

responses for the estimation of 𝑇𝑑.  

4. P AND PV CONTROLS 

The system has an integral term in the closed-loop transfer 

function and, thus, only P and PV feedback controllers are 

used to generate vertical speed signal. PV control, unlike PD 

control, does not yields numerator dynamics. The P-feedback 

controller is used in the determination of the time delay, and 

the PV-feedback controller is used to analyze the effect of the 

time delay on the AR.Drone 2.0 altitude response. Figs. 3 and 

4 show the Simulink setups developed for conducting the 

simulations, and the controller gains were used in Fig. 2 for the 

experiments. The transfer function of the time-delay closed-

loop system for the P controller is given as 

                                
𝑍(𝑠)

𝑍𝑑𝑒𝑠(𝑠)
=

𝐾𝑃𝑒−𝑠𝑇𝑑

𝑠 + 𝐾𝑃𝑒−𝑠𝑇𝑑
                             (9) 

This time-delay system is a retarded type. As expected the 

characteristic equation is transcendental, and therefore the 

closed-loop poles are infinite; the exponential term in the 

characteristic equation will introduce oscillations into system. 

Comparing the characteristic equation of the closed-loop 

system in (9) to the first-order system in (5), 𝑎𝑜 = 0 and 𝑎1 =
−𝐾𝑃. 

 

Fig. 3: Simulink block diagram for P-feedback control. 

 

Fig. 4: Simulink block diagram for PV-feedback control. 

The effect of 𝑇𝑑 on the drone’s altitude response was studied 

using analytical, simulation, and experimental approaches by 

designing PV controller. Suitable PV controller gains, 𝐾𝑝 and 

𝐾𝑣, are obtained to improve on the transient response 

performance. High pass filter (HPF) with damping ratio, 
𝑓

=

1.0 was used for the derivative controller. A suitable natural 

frequency, 𝜔𝑓, value was selected, by tuning and the use of 

Bode plot, for the filter. The transfer function of the time-delay 
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closed-loop system for the PV controller, neutral type, is given 

as 

                        
𝑍(𝑠)

𝑍𝑑𝑒𝑠(𝑠)
=

𝐾𝑃𝑒−𝑠𝑇𝑑

𝑠 + (𝐾𝑃 + 𝐾𝑣𝑠)𝑒−𝑠𝑇𝑑
                  (10) 

5. RESULTS AND DISCUSSION 

5.1 Estimation of the Time Delay 

Initially, the drone’s altitude responses were obtained for 

different values of 𝐾𝑝, as shown in Fig. 5. Note that if there is 

no delay (𝑇𝑑 = 0), there should be no overshoot. The 

characteristic root is −𝐾𝑝 (refer to Eq. (9)), which is a real 

number. However, as seen in Fig. 5, the delay introduces 

imaginary parts in the roots and, thus, oscillation in the 

responses. Therefore, the delay has to be precisely estimated 

and considered in designing control. For ease of analyzing the 

responses are shifted to start at (0𝑠, 0𝑚). The gain value, 𝐾𝑝 =

1.0 seems to be ideal for the controller since the response has 

no overshoot, however, the response is very slow. As it can 

also be observed, increasing 𝐾𝑝 makes the response faster, the 

rise time becomes shorter, but introduces higher 𝑀𝑜. This is 

partly due to the time delay in the system, which introduces 

nonlinearity on the dynamics. 

 

Fig. 5: Experimented altitude responses: varying Kp. 

It was also observed that the saturation applied to the control 

input has a nonlinear effect on the system’s response, 

especially as 𝐾𝑝 increases. Using simulation, an appropriate 

𝐾𝑝 = 1.31 was selected, that gives a response with a sufficient 

overshoot for estimation and with minimum saturation effect. 

5.1.1 Numerical Method 

The drone’s altitude response oscillates (see Fig 5) and, thus, 

the system has two complex conjugate dominant, rightmost, 

roots. Table 1 shows a summary of the simulation altitude 

responses transient properties, by varying 𝑇𝑑 at 𝐾𝑝 = 1.31, 

where 𝐾 is a real constant tuning parameter, a multiplier of 𝑇𝑠. 

The drone’s altitude responses with 𝐾𝑝 = 1.31 are shown in 

Fig. 6, with Table 2 displaying their corresponding 𝑀𝑜 and 𝑡𝑝 

values. The value, 𝑡𝑝 = 3.055s, with the highest 𝑀𝑜 =

2.300% gives the largest 𝑇𝑑. Comparing the 𝑀𝑜 = 2.300% to 

the results in Table 2, 𝑇𝑑 is estimated as 5.6646𝑇𝑠, which gives 

0.368𝑠. 

Table 1. Simulated altitude responses: Kp = 1.31 

K Td = KTs (s) Mo (%) 

4.0000 0.260 0.000 

5.0000 0.325 0.419 

5.6000 0.364 2.067 

5.6640 0.368 2.298 

5.6645 0.368 2.301 

  5.6646*   0.368*   2.300* 

5.6660 0.369 2.305 

Table 2. Experimented altitude responses: Kp = 1.31 

 Flight 

1 2 3 4 5 

Mo (%) 2.300* 2.290 2.300 2.270 2.140 

tp (s) 3.055* 3.084 3.575 3.194 3.096 
 

 

Fig. 6: Experimented altitude responses: Kp = 1.31. 

 

Fig. 7: Iteration of fsolve to estimate the time-delay. 

5.1.2 Use of Characteristic Roots 

From Section 5.1.1, 𝑀𝑜 = 2.300% and 𝑡𝑝 = 3.055s, thus,  

and 𝜔𝑛 are computed as 0.7684 and 1.6069 𝑟𝑎𝑑𝑠−1, 

respectively using (8). Using (7), the dominant characteristic 
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roots, approximated, are calculated as 𝑠 = −1.2347 ±
1.0284𝑗. Then, from (6), 𝑇𝑑 is determined as 0.374𝑠 using 

fsolve in MATLAB with initial guess value of 0.2𝑠. See Fig. 7 

for the iteration of the fsolve. 

5.2 PV Control: Design and Implementation 

As above the estimated time delay, using both the numerical 

and the analytical methods, is approximately 0.37𝑠. A 

MATLAB-based software package (Vyhlídal, 2013) was used 

to study the stability of the neutral type time-delay system, by 

numerically solving the characteristic equation in Eq. (10). 

The closed-loop system characteristic roots within a specified 

region are then plotted for various 𝐾𝑣 values. Fig. 8 shows the 

spectrum distribution of the characteristic roots and Table 3 

shows a summary of the rightmost (i.e., dominant) roots for 

each system. The value 𝐾𝑣 = 0.3 yields the most stable 

rightmost roots among them.  

Table 3. Rightmost characteristic roots of the PV control 

system with Kp = 2.0 and Td = 0.37s 

Kv Rightmost Complex Roots 

0.0 -1.42 ± 3.07j 

0.1 -1.98 ± 3.25j 

  0.3*   -3.25 ± 24.75j 

0.5 -1.84 ± 6.98j 

0.7 -0.89 ± 7.47j 

 

Fig. 8: PV control system characteristic roots spectrum 

distribution with Kp = 2.0 and Td = 0.37s. 

The corresponding simulation altitude responses for the 

system were also obtained for the various 𝐾𝑣 values, not shown 

in this paper. It can be seen that as 𝐾𝑣 increases at 𝐾𝑝 = 2.0 

and 𝑇𝑑 = 0.37s, 𝑀𝑜 decreases and the rise time becomes 

longer. At higher values of 𝐾𝑣, the response is oscillatory and 

the system becomes unstable. This is also observed in Fig. 8, 

that as 𝐾𝑣 increases the roots move to the right, increasing the 

instability in the system. 

Now, based on these analyses, a controller with 𝐾𝑝 = 2.0 and 

𝐾𝑣 = 0.3 was selected as the most suitable, with closed-loop 

system response transient properties of 𝑀𝑜 = 0.44%, 𝑡𝑠 =
1.52𝑠, and 𝑡𝑝 = 1.76𝑠. Using these controller gains, the HPF 

was included in the simulation control system, and its effects 

on the altitude transient response was studied for different 

values of 𝜔𝑓. It is observed that at smaller 𝜔𝑓 values the 

response oscillates, and at higher values the response distorts. 

The oscillations and the distortions effects were reduced by 

using the high-order solver, ode8 (Dormand-Prince). 

The HPF with 𝜔𝑓 = 38 𝑟𝑎𝑑𝑠−1 and 
𝑓

= 1.0 was then 

selected, with poles of −38 repeated. Now, looking at the poles 

distribution of the system in Fig. 8, it can be observed that the 

poles of this filter is located to the left than the poles of the PV-

feedback closed-loop system, without the filter effect. Thus, 

this filter will respond faster, therefore, it will have smaller 

effect on the drone’s altitude transient response. The filter’s 

cutoff frequency was determined as 5.68 𝑟𝑎𝑑𝑠−1 (0.90 Hz). 

Fig. 9 and Table 4 shows the simulation altitude responses and 

their corresponding transient properties, with the HPF and 

𝐾𝑝 = 2.0, for different 𝐾𝑣 values. The results with 𝐾𝑝 = 2.0 

and 𝐾𝑣 = 0.3 shows an improved transient response 

performance, which suggests that the estimation of delay and 

analysis presented help.  

Table 4. PV controller altitude response transient 

properties, with Kp = 2.0 and the high pass filter 

 Kv 

 0.0 0.1  0.3* 0.5 0.7 

 Simulation (Td = 0.37s) 

Mo (%) 15.10 10.10 0.32 0.15 0.70 

tp (s) 1.82 1.76 1.69 3.64 4.36 

ts (s) 3.28 2.87 1.52 2.33 3.04 

 

 

Experiment 

Mo (%) 8.40 5.30 2.92 0.80 0.40 

tp (s) 2.21 2.15 2.18 4.76 4.07 

ts (s) 4.00 2.67 2.86 1.99 2.48 

 
Fig. 10 and Table 4 also shows the experimented altitude 

responses and their corresponding transient properties, with 

the HPF and 𝐾𝑝 = 2.0, for different 𝐾𝑣 values. It can be seen 

that as the 𝐾𝑣 value increases 𝑀𝑜 decreases and in general the 

responses becomes slower. The PV controller performed better 

for 𝐾𝑣 = 0.3, 0.5, and 0.7 at 𝐾𝑝 = 2.0. 

 

Fig. 9: Simulated PV controller altitude responses with Kp = 

2.0 and Td = 0.37s. 
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Fig. 10: Experimented PV controller altitude responses with 

Kp = 2.0. 

6. CONCLUSIONS 

This study has demonstrated how to estimate the time delay in 

a quadrotor UAV, Parrot AR.Drone 2.0, altitude control 

system. Through numerical and analytical approaches, the 

time delay was estimated as 0.37𝑠. In the estimation of the 

time delay, an appropriate P controller was used and the gain 

that minimizes the effect of the applied control signal 

saturation on the system’s response was selected. The effect of 

the time delay on the drone’s altitude response was analyzed, 

and the designed PV controller performed better than the P 

controller, especially with gains of 𝐾𝑣 = 0.3, 0.5, and 0.7 at 

𝐾𝑝 = 2.0. 

The simulations and experiments were conducted using 

MATLAB/Simulink high-order solver, ode8 (Dormand-

Prince). Investigation through trials revealed that selection of 

the solvers has significant effects on the drone’s altitude 

response. The HPF performance was constrained by the type 

of solver used and the filter performed better with the high-

order solvers.  

In future, robust controllers for the drone’s attitude and 

position (x and y) motions can be developed by estimating and 

incorporating the time delay in the control systems. This 

problem is significantly more challenging, since the equation 

of motions are more complex compared to that of the altitude 

motion. Furthermore, the presented time-delay estimating 

methods can be extended to general systems of DDEs (higher 

than first order), and be applied to delay problems in network 

systems and fault detection of actuators. 
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