
A Fast Map-Reduce Algorithm for Burst Errors in Big 

Data Cloud Storage 
 

Xue Qin 

Department of ECE 

University of Texas at San Antonio 

San Antonio, TX, U.S.A. 
 

qinxue1107@gmail.com 

Brian Kelley 

Department of ECE 

University of Texas at San Antonio 

San Antonio, TX, U.S.A. 
 Brian.Kelley@utsa.edu 

 

Mahdy Saedy 

AT&T-Services Design & Dev. 

AT&T Research Labs  

Middletown, NJ 07748 USA 
Mahdy.Saedy@att.com 

Abstract - In distributed storage for Big Data systems, 

there is a need for exact repair, high bandwidth codes.  

The challenge for exact repair in big-data storage is to 

simultaneously enable both very high bandwidth repair 

using Map-Reduce and simple coding schemes that also 

combine robust maximally distance separable (MDS) exact 

repair. MDS repair is for the rare, but exceptional outlier 

error patterns requiring optimum erasure code 

reconstruction. We construct the optimum fast bandwidth 

repair for big-data sources. Our system uses Map-Reduce, 

exact repair reconstruction. The algorithm combines MDS 

with a second fast decode algorithm in a cloud 

environment. We illustrate cloud experiments for optimum 

fast bandwidth reconstruction for 1-Exabyte Big Data in 

the cloud and demonstrate cloud results for Poisson error 

rate arrival models. Unlike prior methods, we jointly solve 

the problem of fast bandwidth repair for burst-memory 

error patterns and for code rates up to 
�
� in a real time 

error model framework for Big Data. Furthermore, 

simulations indicate this method outperforms prior fast 

bandwidth approaches for burst errors. We also illustrate 

Map-Reduce algorithm optimized for fast bandwidth repair 

in Big Data storage in clouds. 

Keywords: Exabyte Big Data, fast reconstruction, exact 

repair, erasure codes, Map-Reduce, cloud systems, 

maximally distance separable 

1 Introduction 

  Cloud techniques have relevance to many engineering 

research fields. One of the most important applications for 

using the cloud is “Big Data.”  Since 2012, every day 2.5 

Exabytes (2.5 × 10	
 bytes) of data are created. Such 

tremendous volumes of “Big Data” are increasingly 

common.  Industrial design of data centers to process Big 

Data and the use of cloud servers for distributed 

implementation often invoke open-source applications such 

as Hadoop.  Hadoop is one of the most useful open-source 

software frameworks for distributed storage and processing 

[1]-[5] of Big Data, particularly on clusters of commodity 

hardware. In Hadoop Distributed File System (HDFS), files 

are split into large blocks (default 64MB or 128MB) and 

are distributed into the blocks amongst the Data Nodes in 

the cluster. In case of data loss, HDFS replicates the 

original data for three times to provide a robust storage. 

 Distributed storage systems in cloud data centers, 

Data as a Service (DaaS) systems, and other Big Data 

systems increasingly require fast bandwidth node 

reconstruction in the event of disk failures. For instance, 

open-source frameworks such as OpenStack [6] deploy 

Swift DaaS and Glance image storage. In many instances, 

there is a need to both achieve optimum guarantees of data 

recovery, in the event of node failure and fast bandwidth 

repair. Degree of protection and speed are countervailing 

objectives.  

1.1  System Model for Big Data Reconstruction 

 Typically, an erasure code, converts � information 

symbols using a generator matrix into an �-symbol 

codeword [7],[8]. We propose the use of maximum 

distance separable (MDS) coding [9],[10] jointly with a fast 

reconstruction algorithms for correction, but reformulated 

in a cloud environment for Big-Data [11]. The specific 

pattern of the errors in memory determines whether we can 

apply fast bandwidth or the optional MDS reconstruction. 

 Given a Poisson error arrival patterns into the Big 

Data system, a core concept is this―control the mean 

number of errors injected into the Big Data set by applying 

fast erasure decoding in real time in the cloud at a sufficient 

rate,	1 T���⁄  so that slower MDS reconstruction occurs with 

low probabilistic guarantees. We define the effective 

bandwidth achieving this objective, EffBW = 1 T���⁄ . We 

apply the fast algorithm with probability,� = �(���� , �), 
thereby enabling mean computational latency of the 

reconstruction to become   

        D = (1 − q) × L × T + q × T ≪ L × T       (1) 

 In Table 1, T and L × T  are the computational latency 

of the fast bandwidth   reconstruction and (L-times) longer 

MDS latency, respectively.  A key optimization goal is the 

determination of the mean upper bound time T���  so that 

the combined rate 
�
� simple regenerative code with MDS 

[12] in a cloud environment is dominated by the simple 

regenerative code latency (e.g.  D& , ≪ T���).  We define our 

optimality objective as the upper bound correction period, T��� , enabling the mean computational delay of the 

reconstruction system, D&, to be 1% of T��� . Figure 1 
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illustrates that the fast algorithm delay. This occurs with 

high probabilistic guarantees, greatly decreasing '[D ]. 
The system model can be used to provide the mean 

computational delay of the overall reconstruction 

system,*&, to be 1% of T_per. This is based upon a given 

error arrival rate, �+, in memory and the dataset size A. 

That is, given a known �+, and A, the system model will 

provides the optimal options for (N,M) pair to keep the  *&≈ 1%  ×T_per. Constructing the Big Data structure by 

using these system model parameters reduces the time cost 

for exact repair of lost data (nodes). For example, let us 

assume the system node size is equal to the Hadoop node 

size. Since Hadoop repairs the lost nodes in parallel and our 

system is also running our Hadoop fast bandwidth 

algorithm, the time cost for single node and multiple node 

repairs are the same. However, since we do not replicate 

the original data by a factor of three, our system framework 

significantly reduces the memory storage. 

 Section 2 proposes a new Map-Reduce, fast-

bandwidth regenerative algorithm for Big Data on Clouds. 

It is based upon a Poisson error arrival model that we have 

simulated.  Section 3 describes fast bandwidth system 

architecture four our distributed, fast bandwidth 

regenerative code capable of large error burst handling. 

Section 3 also outlines the variety of cloud based 

processing protocols to be implemented as applications. A 

new algorithm that defines the minimum set of MDS 

corrections to enable fast bandwidth via simple 

regeneration is presented using a Hadoop process. Section 

4 summarized our conclusions. 

2 Fast Bandwidth Cloud Regeneration 

of Big Data 

Table 1 represents the set of parameters used in our 

cloud framework. Let’s assume that our Big Data set over 

time has a Poisson error arrival rate in memory of λ bit	errors sec 512	bytes⁄⁄  [13]. Let’s define the optimum 

effective bandwidth of cloud reconstruction of the Big Data 

set,6, as the value T789 that enables D  to be 1% of T789  
STEP 1:  For a given � and Big Data size, 6, we determine 

the optimum Map-Reduce parallelism P. Based upon � and 

the size of 6, divide the set 6 into 6 /P memories.   

STEP 2: Encode via MAP Reduce each of the 6/P 

memories with a combined rate 
�
� simple regenerative code 

and MDS code. The MDS code further divides each of the 6/P memories into N nodes based upon the (N,k) encoding 

for MDS.  

1. For the fast bandwidth sparse encode procedure, form 

N encode data sets containing (x,y,s) triplets (see [8]). 

2. The (N,k) MDS encoding procedure divides a cloud 

database of size 6/; into � sets of size 
6

(<×=). In each 

system, the resulting source data is further encoded into 

� distributed memories via an (�, �) code with an 

erasure code rate, > = =
?. We therefore allocate ; × � 

memories of size 
6

(<×?) in a Map-Reduce framework. 

From this construction, we can tolerate � − � disk 
failures in each of the ; sets and still reconstruct any of 
the � information nodes in each set. 

STEP 3: As Poisson errors arrive at the Big Data memory, 

For j = 1,2, …P 

3. Apply reconstruction, adaptively selecting fast 

bandwidth with a probablity q or, equivalently, MDS 

with a probablity 1 − q. The mean computational 

latency of the  reconstruction  code is therefore 1% × T789 (≪ latency of  the MDS). 

4. Place the N	(x, y, s)  encoded data sets in N separate 

 Nodes for each j. 

EndFor 

 

We illustrate this cloud application architecture in Figure 2 

and the cloud system protocol in Figure 3. 

2.1 Hadoop Big Data Reconstruction on Clouds 

Our goal is fast real time processing of Big-Data with 
reconstruction speed increased using Hadoop parallel 
operation and Fast Bandwidth repair.  The Map-reduce 
pseudo code is defined as follows: 

Map pseudocode: 
Map 

Define Map(Node_input N, detection_input D): 

      Correcting Set = []; 

 for each Node in Node_input N 

                     if detection flag D(i) == 1, then 

                 CorrectingSet = [Node((i-2)%N);  

    Node((i-1)%N); Node(i);  

                     Node((i+1)%N); 

Node((i+2)%N)]; 

Error_Location = i; 

                      endif 

   endfor 

     return Reduce (Error_Location, CorrectingSet); 

Reduce pseudocode 

Reduce 

    Define  Reduce(Error_Location key,  CorrectingSer  

value): 

New_node = []; 

New_node.x = xor(Node((i-2)%N).s ,  Node((i-

2)%N).y); 

New_node.y = xor(Node((i+1)%N).x,  Node((i-

1)%N).s); 

New_node.s = xor(Node((i+2)%N).x , 

Node((i+1)%N).y); 

Node(i) = New_node; 

    return (Error_Location, New_node) 

 

The Cloud Simulation Results in Fast Bandwidth 

Reconstruction, as illustrated in Figure 4. In a Hadoop 
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cluster (Hadoop 1.0 configuration), there are Name Nodes 

and Data Nodes. The data replication on each data node is 

64MB. The MDS encoding procedure divides a database of 

size 6 into � sets of size 
6
= . This configuration needs to be 

replicated to all data nodes blocks (see Fig. 3). The 

resulting data is mapped to F distributed memories via an (F, �) code of rate > = =
G. From this construction, we can 

tolerate F − � disk failures, or erasures, and still reconstruct 

any of the � information nodes.  A second key objective is 

fast reconstruction. MDS decoding is not necessarily 

supportive of fast, real time data reconstruction.   One 

method proposed for fast reconstruction has been the joint 

combining of a rate 
�
� simple regenerative codes with MDS. 

Under this revised model F storage nodes can tolerate F − � erasures at a rate 
�
� × =

G and arbitrarily capable  of 

achieving rates up to > = �
�. Besides the Simple 

Regenerative Code (SRC), there are many other codes 

based on MDS Codes or Reed-Solomon Code that support 

distributed storage. Different open-source erasure coding 

libraries provide different performance. 

2.2 Fast Bandwidth Simple Regenerative Code 

 The prior simple regenerative method does not handle 

burst errors. A principle innovation described here is the 

development of a simple regenerative code capable of 

correcting burst errors in a fast way.  The method is orders 

of magnitude faster than the prior approach, due to our 

ability to avoid slower MDS recovery for all but the most 

severe scenarios. We rely on the use of a simple 

regenerative extension field coupled to MDS, capable of 

fast burst reconstructions, simultaneously if needed, with 

MDS. 

3 Derivation of Protocols for MDS Pre-

coding and Sparse Codes 

 Fig. 5 shows the construction of our storage nodes 

from information source. The source is pre-coded using 

Maximum Distance Separable (MDS) method. Then 

additional redundancy in node is generated by a subsequent 

simple regenerative Sparse Code defined in in GF(2�). 
Figure 6 displays the details of how MDS pre-coding and 

Sparse Code working.  In the pre-coding part, information 

source is separated into two parts which have the same 

length and then go through the (F, 	�) MDS encoding.   

After this encoding, two encoded information sets (J	,	K) 

are generated. Then, for each pair of  (J,	K), we apply an 

finite field addition operation in GF(2�). The relationship 

between J, K	and	� is shown in Eq. 1 

J = L�(+)       (1) 

K = L�(	)       (2) 

Here, L	is the generator matrix of the (F, �) MDS code 

in GF(2^p). The parameters J	and	K	are the encoded vector 

with length F × 	M. Inputs �(+)	and �(	)	are two independent 

information sources with length � × 	M. Output N	is defined 

by	 N = L�(+) + L�(	) = LO�(+) + �(	)P = J + K	
In GF(2) addition in N = J ⊕ K implies a XOR. But we 

define addition, ⊞,  in the extension field of GF(2�).	For 

example in GF(2S),  with primitive polynomial M(T) = 1 +T� + TS, J+ = US = [10100], K+ = U		 = [11100]. Then J+ ⊞ K+ = [01000] = U in GF(2S) addition under M(T). 
This is shown in Fig. 3. 

3.1 Simple Regenerative Code  for FAST Bandwidth 

Construction of Burst Errors  

 After encoding the information and redundant data, 

we place order the data in a defined sequence so that 

neighboring nodes enable fast bandwidth correction of 

errors without resorting to MDS. The storage order is 

shown in Fig.7. Notice all these locations are modulo F 

since our Node sequence is circularly arranged. Hence, we 

assume that we have F nodes in total. The node structure 

details is as follows:: 

V+̅ = X J+K	J�⊞K�Y , V	̅ = X J	K�J�⊞K�Y . . VG̅Z	 = X
JGZ	K〈G〉]J〈G^	〉] ⊞K〈G^	〉]Y          (3) 

For an arbitrary node	_, 0 ≤ _ ≤ F − 1,	 
          

	V̅a = X
JaK〈a^	〉]J〈a^�〉] ⊞K〈a^�〉]

Y ≡ X JaK〈a^	〉]N〈a^�〉]
Y                (4) 

Equation (4) is a simple fast regenerative code capable of 
burst error correction without resorting to MDS. 

3.2 Node Correction fo Storage as a Service (SaaS) 

 We now illustrate our proposed failure nodes 

detection. As shown in Fig. 8, after we construct our 

distributed node storage on the cloud, database errors, 

memory errors, and node failures occur. Further causation 

is also due to hardware malfunctions, power outages, and 

database maintenance.  Our goal is rapid, pervasive 

correction of failed nodes, independent of the cause.  After 

node error detection, we generate a list of failed nodes in 

the set of F, defining binary 1 as the error nodes and binary 

0 as operational nodes with no errors. Hence, we maintain a 

state-error vector to delineate the complete set of failed and  

correctly operating nodes. The length of the vector is the 

number of the nodes, F. In general, for a detection vector c	×G, if node d has failed, then c	,e = 1, otherwise it is 0. 

Thus, 
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c	+×	 = [1 0 0 1 0 1 0 0 0 0] 
indicates a 10 nodes system with 3 detected node errors or 

failures, nodes 0, 3, and 5.  

3.3 Directly Fast Bandwidth Reparable 

 Typically, if errors occur in particular patterns, we 

can directly use the Fast Bandwidth Reparation to correct 

the failed nodes, without invoking the higher order 

regeneration capability of our more powerful MDS code. 

For an (n, k) MDS code with distributed storage across n 

nodes, we can fast bandwidth correct u = floor jk�l	 nodes 

in parallel. To test whether we are able to use the Direct 

Fast Bandwidth Reparation, we propose the application of a 

fast-bandwidth detection matrix Tk×k in the cloud 

application. 

 As shown in Fig.9, we receive a detection vector  c	×G 

from the cloud system. Then we measure the weight of the 

vector	c	×G. If the	mndopq(c	×G) r s, there exists a high 

probability that errors can be corrected using the fast repair 

procedure. 

q0F×1 = (1 1 1 0 0 … 0)�(Original) 

q1F×1 = (0 1 1 1 0 … 0)�(Shift 1) 

q2F×1 = (0 0 1 1 1 … 0)�(Shift 2) 

t�k×	 = (0 0 0 1 1 … 0)t(Shift 3) 

Our testing matrix is defined by 

	�G×G = (q+G×	 q	G×	 q�G×	 … qGZ�G×	 qGZ�G×	 qGZ	G×	)u, 

That is, 

             vG×G =

w
x
x
x
x
x
y1 1 1 0 … 0
0 1 1 1 … 0
0 0 1 1 … 0
⋮ ⋮ ⋮ ⋮ … ⋮
0 … 0 1 1 1
1 … 0 0 1 1
1 … 0 0 0 1{

|
|
|
|
|
}

                     (5) 

We define ~ � �F�F � cF�1. Iff all the elements in ~ are 

either 1 or 0, then it is reparable. 
If the detection vector is directly fast bandwidth 

reparable, as shown in Fig. 5, we invoke the Fast 
Bandwidth Algorithm to correct the error and regenerate the 
error-free nodes.  Suppose node m has failed. A new matrix 
named	�� is built: 

            �a � (Va̅Z� Va̅Z	 Va̅^	 Va̅^�)u           (6) 

That is, 

�a �

w
x
x
y
J〈aZ�〉] K〈aZ	〉] J〈a〉] $ K〈a〉]
J〈aZ	〉] K〈a〉] J〈a^	〉] $ K〈a^	〉]
J〈a^	〉] K〈a^�〉] J〈a^�〉] $ K〈a^�〉]
J〈a^�〉] K〈a^�〉] J〈a^�〉] $ K〈a^�〉]{

|
|
}
       (7) 

 
From the ��	matrix, we know the repair of one failed 

node,	��, requires that access ��Z�, 	��Z�, 	��^�, ��^�.	 
Since we have n nodes in total, we define a matrix N as: 

              �k�k �

w
x
x
yN+ N	

⋱
NkZ	{

|
|
}
                   (8) 

Figure 9 shows the entire system procedure for a fast 

bandwidth application applied to a Big Data source. After 

we encode our information source, we place it in the cloud 

using Storage as a Service (SaaS) paradigm. Storage nodes 

fail randomly. We apply a polling procedure for pervasive 

node detection. When node errors are detected, their 

locations are recorded and communicated to our correction 

system “SaaS Database.” The vector, c	, passed formulate a 

binary rule that determines whether we can apply Direct 

Fast Bandwidth repair or not. If yes, we execute the 

algorithm. If not, we use MDS pre-correction before we run 

the fast algorithm. 

4 Conclusion 

We have formulated an innovative cloud application 

that operates on Big Data in a distributed processing 

framework, using Map-reduce, while simultaneously 

operating at the optimum fast bandwidth rate.  In Big Data 

storage systems, there is more than one node that can fail. 

In this case, we illustrated an optimal joint correction via 

maximally distance seperable codes and simple 

regenerative fast bandwidth codes in the cloud. Thus, 

severe error patterns that cannot be repaired by the simple 

regnerative code can be correct by the theoretical optimal 

MDS code. We also simulate the bandwidth performance 

and that it outperforms the prior methods of [8]. Moreover, 

we propose an innovative, patented, map-reduce algorithm 

ideal for fast bandwidth repair in cloud data center storage.  

Table 1.  Cloud Application Parmeters  

 

 
Figure 1. Timeline Latency Model 
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Figure 2. System Architecture- FMR code is implemented 

in Task Tracker and the dynamic configuration parameters 

are communicated from Name Node to Data Nodes through 

Job Tracker. 

 

Figure 3. Cloud encode and reconstruction procedure for a 

given Big Data size, �, and error arrival rate, �, into 

memory. 

 

Figure 4. Upper Bound Computational Latency of Big Data 

Reconstruction Versus Big Data Error Check Period, Tper. 

 

 

Figure 5. MDS Pre-coding and Sparse Code construction 

 

 

 

 
Figure 6. Example of (n,k) SRC coding. 

 

 

 

 
Figure 7. Example of finite field addition. 

 

 

 
Figure 8. (n,k) SRC storage nodes placement [9] 

Big Data

Data Set

≈≈≈≈1 

Exabyte Big-Data

Decom-

position

1

P

Hadoop 

(N,k) MDS 

+ Sparse 

code 

1

P

N nodes 

per MDS 

System
Node 

Failure 

Detect-

ion

Fast 

Corre

ction

N

1

1/T: fast 

bandwidth

correction rate

1/T: Failure 

Detection rate

Error rate 

injection model

Write back

1

P

1

P

N

1

Mapped
Correcting Set Reduced

Output
8 Nodes

New Node Corrected Nodes
Node ID,

(X, Y, X xor Y )

Correcting Set
New Node

Corrected Nodes

0,

0,0,

0,(x0,

(x0,(x0,

(x0,y1,

y1,y1,

y1,s2),

s2),s2),

s2),0

00

0

1,

1,1,

1,(x1,

(x1,(x1,

(x1,y2,

y2,y2,

y2,s3),

s3),s3),

s3),0

00

0

2,

2,2,

2,(x2,

(x2,(x2,

(x2,y3,

y3,y3,

y3,s4),

s4),s4),

s4),1

11

1

3,

3,3,

3,(x3,

(x3,(x3,

(x3,y4,

y4,y4,

y4,s5),

s5),s5),

s5),0

00

0

4,

4,4,

4,(x4,

(x4,(x4,

(x4,y5,

y5,y5,

y5,s6),

s6),s6),

s6),0

00

0

5,

5,5,

5,(x5,

(x5,(x5,

(x5,y6,

y6,y6,

y6,s7),

s7),s7),

s7),0

00

0

6,

6,6,

6,(x6,

(x6,(x6,

(x6,y7,

y7,y7,

y7,s0),

s0),s0),

s0),1

11

1

7,

7,7,

7,(x7,

(x7,(x7,

(x7,y0,

y0,y0,

y0,s1),

s1),s1),

s1),0

00

0

0,

0,0,

0,(x0,

(x0,(x0,

(x0,y1,

y1,y1,

y1,s2),

s2),s2),

s2),0

00

0

0,

0,0,

0,(x0,

(x0,(x0,

(x0,y1,

y1,y1,

y1,s2),

s2),s2),

s2),0

00

0

1,

1,1,

1,(x1,

(x1,(x1,

(x1,y2,

y2,y2,

y2,s3),

s3),s3),

s3),0

00

0

2,

2,2,

2,(x2,

(x2,(x2,

(x2,y3,

y3,y3,

y3,s4),

s4),s4),

s4),1

11

1

3,

3,3,

3,(x3,

(x3,(x3,

(x3,y4,

y4,y4,

y4,s5),

s5),s5),

s5),0

00

0

4,

4,4,

4,(x4,

(x4,(x4,

(x4,y5,

y5,y5,

y5,s6),

s6),s6),

s6),0

00

0

4,

4,4,

4,(x4,

(x4,(x4,

(x4,y5,

y5,y5,

y5,s6),

s6),s6),

s6),0

00

0

5,

5,5,

5,(x5,

(x5,(x5,

(x5,y6,

y6,y6,

y6,s7),

s7),s7),

s7),0

00

0

6,

6,6,

6,(x6,

(x6,(x6,

(x6,y7,

y7,y7,

y7,s0),

s0),s0),

s0),1

11

1

7,

7,7,

7,(x7,

(x7,(x7,

(x7,y0,

y0,y0,

y0,s1),

s1),s1),

s1),0

00

0

0,

0,0,

0,(x0,

(x0,(x0,

(x0,y1,

y1,y1,

y1,s2),

s2),s2),

s2),0

00

0

2,

2,2,

2,(s2+y2,

(s2+y2,(s2+y2,

(s2+y2,

s3+x3,x4+y4),1

s3+x3,x4+y4),1s3+x3,x4+y4),1

s3+x3,x4+y4),1

6,

6,6,

6,(s6+y6,

(s6+y6,(s6+y6,

(s6+y6,

s7+x7,x0+y0),1

s7+x7,x0+y0),1s7+x7,x0+y0),1

s7+x7,x0+y0),1

2,

2,2,

2,(x2',

(x2',(x2',

(x2',y3',

y3',y3',

y3',s4'),

s4'),s4'),

s4'),0

00

0

6,

6,6,

6,(x6',

(x6',(x6',

(x6',y7',

y7',y7',

y7',s0'),

s0'),s0'),

s0'),0

00

0

50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

: N=1000, P0=1.4901e+07, M=64MB

: N=5000, P0=2.9802e+06, M=64MB

: N=2000, P0=7.4506e+06, M=64MB

: N=2000, P0=1.4901e+07, M=32MB

1%Tper 1%Tper1%Tper1%Tper

U
p

p
e

r 
B

o
u

n
d

 C
o

m
p

u
ta

ti
o

n
a

l D
e

la
y 

o
f 

B
ig

 D
at

a 
R

e
co

n
st

ru
ct

io
n

 

Big Data Error Check Period, Tper, in seconds 

ber per sec/512 bytes

Information 

Source Coding: MDS 

precoding
Sparse

Code

Node 1 Node 2 Node 3 Node n

2015 10th System of Systems Engineering Conference (SoSE)

402



6 

 

 
Figure 9. Fast Big Data Bandwidth Algorithm 
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