
A Fast Map-Reduce Algorithm for Burst Errors in Big

Data Cloud Storage

Xue Qin

Department of ECE

University of Texas at San Antonio

San Antonio, TX, U.S.A.

qinxue1107@gmail.com

Brian Kelley

Department of ECE

University of Texas at San Antonio

San Antonio, TX, U.S.A.
 Brian.Kelley@utsa.edu

Mahdy Saedy

AT&T-Services Design & Dev.

AT&T Research Labs

Middletown, NJ 07748 USA
Mahdy.Saedy@att.com

Abstract - In distributed storage for Big Data systems,

there is a need for exact repair, high bandwidth codes.

The challenge for exact repair in big-data storage is to

simultaneously enable both very high bandwidth repair

using Map-Reduce and simple coding schemes that also

combine robust maximally distance separable (MDS) exact

repair. MDS repair is for the rare, but exceptional outlier

error patterns requiring optimum erasure code

reconstruction. We construct the optimum fast bandwidth

repair for big-data sources. Our system uses Map-Reduce,

exact repair reconstruction. The algorithm combines MDS

with a second fast decode algorithm in a cloud

environment. We illustrate cloud experiments for optimum

fast bandwidth reconstruction for 1-Exabyte Big Data in

the cloud and demonstrate cloud results for Poisson error

rate arrival models. Unlike prior methods, we jointly solve

the problem of fast bandwidth repair for burst-memory

error patterns and for code rates up to
�
� in a real time

error model framework for Big Data. Furthermore,

simulations indicate this method outperforms prior fast

bandwidth approaches for burst errors. We also illustrate

Map-Reduce algorithm optimized for fast bandwidth repair

in Big Data storage in clouds.

Keywords: Exabyte Big Data, fast reconstruction, exact

repair, erasure codes, Map-Reduce, cloud systems,

maximally distance separable

1 Introduction

 Cloud techniques have relevance to many engineering

research fields. One of the most important applications for

using the cloud is “Big Data.” Since 2012, every day 2.5

Exabytes (2.5 × 10	
 bytes) of data are created. Such

tremendous volumes of “Big Data” are increasingly

common. Industrial design of data centers to process Big

Data and the use of cloud servers for distributed

implementation often invoke open-source applications such

as Hadoop. Hadoop is one of the most useful open-source

software frameworks for distributed storage and processing

[1]-[5] of Big Data, particularly on clusters of commodity

hardware. In Hadoop Distributed File System (HDFS), files

are split into large blocks (default 64MB or 128MB) and

are distributed into the blocks amongst the Data Nodes in

the cluster. In case of data loss, HDFS replicates the

original data for three times to provide a robust storage.

 Distributed storage systems in cloud data centers,

Data as a Service (DaaS) systems, and other Big Data

systems increasingly require fast bandwidth node

reconstruction in the event of disk failures. For instance,

open-source frameworks such as OpenStack [6] deploy

Swift DaaS and Glance image storage. In many instances,

there is a need to both achieve optimum guarantees of data

recovery, in the event of node failure and fast bandwidth

repair. Degree of protection and speed are countervailing

objectives.

1.1 System Model for Big Data Reconstruction

 Typically, an erasure code, converts � information

symbols using a generator matrix into an �-symbol

codeword [7],[8]. We propose the use of maximum

distance separable (MDS) coding [9],[10] jointly with a fast

reconstruction algorithms for correction, but reformulated

in a cloud environment for Big-Data [11]. The specific

pattern of the errors in memory determines whether we can

apply fast bandwidth or the optional MDS reconstruction.

 Given a Poisson error arrival patterns into the Big

Data system, a core concept is this―control the mean

number of errors injected into the Big Data set by applying

fast erasure decoding in real time in the cloud at a sufficient

rate,	1 T���⁄ so that slower MDS reconstruction occurs with

low probabilistic guarantees. We define the effective

bandwidth achieving this objective, EffBW = 1 T���⁄ . We

apply the fast algorithm with probability,� = �(���� , �),
thereby enabling mean computational latency of the

reconstruction to become

 D = (1 − q) × L × T + q × T ≪ L × T (1)

 In Table 1, T and L × T are the computational latency

of the fast bandwidth reconstruction and (L-times) longer

MDS latency, respectively. A key optimization goal is the

determination of the mean upper bound time T��� so that

the combined rate
�
� simple regenerative code with MDS

[12] in a cloud environment is dominated by the simple

regenerative code latency (e.g. D& , ≪ T���). We define our

optimality objective as the upper bound correction period, T��� , enabling the mean computational delay of the

reconstruction system, D&, to be 1% of T��� . Figure 1

2015 10th System of Systems Engineering Conference (SoSE)

978-1-4799-7611-9/15/$31.00 ©2015 IEEE 398

2

illustrates that the fast algorithm delay. This occurs with

high probabilistic guarantees, greatly decreasing '[D].
The system model can be used to provide the mean

computational delay of the overall reconstruction

system,*&, to be 1% of T_per. This is based upon a given

error arrival rate, �+, in memory and the dataset size A.

That is, given a known �+, and A, the system model will

provides the optimal options for (N,M) pair to keep the *&≈ 1% ×T_per. Constructing the Big Data structure by

using these system model parameters reduces the time cost

for exact repair of lost data (nodes). For example, let us

assume the system node size is equal to the Hadoop node

size. Since Hadoop repairs the lost nodes in parallel and our

system is also running our Hadoop fast bandwidth

algorithm, the time cost for single node and multiple node

repairs are the same. However, since we do not replicate

the original data by a factor of three, our system framework

significantly reduces the memory storage.

 Section 2 proposes a new Map-Reduce, fast-

bandwidth regenerative algorithm for Big Data on Clouds.

It is based upon a Poisson error arrival model that we have

simulated. Section 3 describes fast bandwidth system

architecture four our distributed, fast bandwidth

regenerative code capable of large error burst handling.

Section 3 also outlines the variety of cloud based

processing protocols to be implemented as applications. A

new algorithm that defines the minimum set of MDS

corrections to enable fast bandwidth via simple

regeneration is presented using a Hadoop process. Section

4 summarized our conclusions.

2 Fast Bandwidth Cloud Regeneration

of Big Data

Table 1 represents the set of parameters used in our

cloud framework. Let’s assume that our Big Data set over

time has a Poisson error arrival rate in memory of λ bit	errors sec 512	bytes⁄⁄ [13]. Let’s define the optimum

effective bandwidth of cloud reconstruction of the Big Data

set,6, as the value T789 that enables D to be 1% of T789
STEP 1: For a given � and Big Data size, 6, we determine

the optimum Map-Reduce parallelism P. Based upon � and

the size of 6, divide the set 6 into 6 /P memories.

STEP 2: Encode via MAP Reduce each of the 6/P

memories with a combined rate
�
� simple regenerative code

and MDS code. The MDS code further divides each of the 6/P memories into N nodes based upon the (N,k) encoding

for MDS.

1. For the fast bandwidth sparse encode procedure, form

N encode data sets containing (x,y,s) triplets (see [8]).

2. The (N,k) MDS encoding procedure divides a cloud

database of size 6/; into � sets of size
6

(<×=). In each

system, the resulting source data is further encoded into

� distributed memories via an (�, �) code with an

erasure code rate, > = =
?. We therefore allocate ; × �

memories of size
6

(<×?) in a Map-Reduce framework.

From this construction, we can tolerate � − � disk
failures in each of the ; sets and still reconstruct any of
the � information nodes in each set.

STEP 3: As Poisson errors arrive at the Big Data memory,

For j = 1,2, …P

3. Apply reconstruction, adaptively selecting fast

bandwidth with a probablity q or, equivalently, MDS

with a probablity 1 − q. The mean computational

latency of the reconstruction code is therefore 1% × T789 (≪ latency of the MDS).

4. Place the N	(x, y, s) encoded data sets in N separate

 Nodes for each j.

EndFor

We illustrate this cloud application architecture in Figure 2

and the cloud system protocol in Figure 3.

2.1 Hadoop Big Data Reconstruction on Clouds

Our goal is fast real time processing of Big-Data with
reconstruction speed increased using Hadoop parallel
operation and Fast Bandwidth repair. The Map-reduce
pseudo code is defined as follows:

Map pseudocode:
Map

Define Map(Node_input N, detection_input D):

 Correcting Set = [];

 for each Node in Node_input N

 if detection flag D(i) == 1, then

 CorrectingSet = [Node((i-2)%N);

 Node((i-1)%N); Node(i);

 Node((i+1)%N);

Node((i+2)%N)];

Error_Location = i;

 endif

 endfor

 return Reduce (Error_Location, CorrectingSet);

Reduce pseudocode

Reduce

 Define Reduce(Error_Location key, CorrectingSer

value):

New_node = [];

New_node.x = xor(Node((i-2)%N).s , Node((i-

2)%N).y);

New_node.y = xor(Node((i+1)%N).x, Node((i-

1)%N).s);

New_node.s = xor(Node((i+2)%N).x ,

Node((i+1)%N).y);

Node(i) = New_node;

 return (Error_Location, New_node)

The Cloud Simulation Results in Fast Bandwidth

Reconstruction, as illustrated in Figure 4. In a Hadoop

2015 10th System of Systems Engineering Conference (SoSE)

399

3

cluster (Hadoop 1.0 configuration), there are Name Nodes

and Data Nodes. The data replication on each data node is

64MB. The MDS encoding procedure divides a database of

size 6 into � sets of size
6
= . This configuration needs to be

replicated to all data nodes blocks (see Fig. 3). The

resulting data is mapped to F distributed memories via an (F, �) code of rate > = =
G. From this construction, we can

tolerate F − � disk failures, or erasures, and still reconstruct

any of the � information nodes. A second key objective is

fast reconstruction. MDS decoding is not necessarily

supportive of fast, real time data reconstruction. One

method proposed for fast reconstruction has been the joint

combining of a rate
�
� simple regenerative codes with MDS.

Under this revised model F storage nodes can tolerate F − � erasures at a rate
�
� × =

G and arbitrarily capable of

achieving rates up to > = �
�. Besides the Simple

Regenerative Code (SRC), there are many other codes

based on MDS Codes or Reed-Solomon Code that support

distributed storage. Different open-source erasure coding

libraries provide different performance.

2.2 Fast Bandwidth Simple Regenerative Code

 The prior simple regenerative method does not handle

burst errors. A principle innovation described here is the

development of a simple regenerative code capable of

correcting burst errors in a fast way. The method is orders

of magnitude faster than the prior approach, due to our

ability to avoid slower MDS recovery for all but the most

severe scenarios. We rely on the use of a simple

regenerative extension field coupled to MDS, capable of

fast burst reconstructions, simultaneously if needed, with

MDS.

3 Derivation of Protocols for MDS Pre-

coding and Sparse Codes

 Fig. 5 shows the construction of our storage nodes

from information source. The source is pre-coded using

Maximum Distance Separable (MDS) method. Then

additional redundancy in node is generated by a subsequent

simple regenerative Sparse Code defined in in GF(2�).
Figure 6 displays the details of how MDS pre-coding and

Sparse Code working. In the pre-coding part, information

source is separated into two parts which have the same

length and then go through the (F, 	�) MDS encoding.

After this encoding, two encoded information sets (J	,	K)

are generated. Then, for each pair of (J,	K), we apply an

finite field addition operation in GF(2�). The relationship

between J, K	and	� is shown in Eq. 1

J = L�(+) (1)

K = L�() (2)

Here, L	is the generator matrix of the (F, �) MDS code

in GF(2^p). The parameters J	and	K	are the encoded vector

with length F × 	M. Inputs �(+)	and �()	are two independent

information sources with length � × 	M. Output N	is defined

by	 N = L�(+) + L�() = LO�(+) + �()P = J + K	
In GF(2) addition in N = J ⊕ K implies a XOR. But we

define addition, ⊞, in the extension field of GF(2�).	For

example in GF(2S), with primitive polynomial M(T) = 1 +T� + TS, J+ = US = [10100], K+ = U		 = [11100]. Then J+ ⊞ K+ = [01000] = U in GF(2S) addition under M(T).
This is shown in Fig. 3.

3.1 Simple Regenerative Code for FAST Bandwidth

Construction of Burst Errors

 After encoding the information and redundant data,

we place order the data in a defined sequence so that

neighboring nodes enable fast bandwidth correction of

errors without resorting to MDS. The storage order is

shown in Fig.7. Notice all these locations are modulo F

since our Node sequence is circularly arranged. Hence, we

assume that we have F nodes in total. The node structure

details is as follows::

V+̅ = X J+K	J�⊞K�Y , V	̅ = X J	K�J�⊞K�Y . . VG̅Z	 = X
JGZ	K〈G〉]J〈G^	〉] ⊞K〈G^	〉]Y (3)

For an arbitrary node	_, 0 ≤ _ ≤ F − 1,	

	V̅a = X
JaK〈a^	〉]J〈a^�〉] ⊞K〈a^�〉]

Y ≡ X JaK〈a^	〉]N〈a^�〉]
Y (4)

Equation (4) is a simple fast regenerative code capable of
burst error correction without resorting to MDS.

3.2 Node Correction fo Storage as a Service (SaaS)

 We now illustrate our proposed failure nodes

detection. As shown in Fig. 8, after we construct our

distributed node storage on the cloud, database errors,

memory errors, and node failures occur. Further causation

is also due to hardware malfunctions, power outages, and

database maintenance. Our goal is rapid, pervasive

correction of failed nodes, independent of the cause. After

node error detection, we generate a list of failed nodes in

the set of F, defining binary 1 as the error nodes and binary

0 as operational nodes with no errors. Hence, we maintain a

state-error vector to delineate the complete set of failed and

correctly operating nodes. The length of the vector is the

number of the nodes, F. In general, for a detection vector c	×G, if node d has failed, then c	,e = 1, otherwise it is 0.

Thus,

2015 10th System of Systems Engineering Conference (SoSE)

400

4

c	+×	 = [1 0 0 1 0 1 0 0 0 0]
indicates a 10 nodes system with 3 detected node errors or

failures, nodes 0, 3, and 5.

3.3 Directly Fast Bandwidth Reparable

 Typically, if errors occur in particular patterns, we

can directly use the Fast Bandwidth Reparation to correct

the failed nodes, without invoking the higher order

regeneration capability of our more powerful MDS code.

For an (n, k) MDS code with distributed storage across n

nodes, we can fast bandwidth correct u = floor jk�l	 nodes

in parallel. To test whether we are able to use the Direct

Fast Bandwidth Reparation, we propose the application of a

fast-bandwidth detection matrix Tk×k in the cloud

application.

 As shown in Fig.9, we receive a detection vector c	×G

from the cloud system. Then we measure the weight of the

vector	c	×G. If the	mndopq(c	×G) r s, there exists a high

probability that errors can be corrected using the fast repair

procedure.

q0F×1 = (1 1 1 0 0 … 0)�(Original)

q1F×1 = (0 1 1 1 0 … 0)�(Shift 1)

q2F×1 = (0 0 1 1 1 … 0)�(Shift 2)

t�k×	 = (0 0 0 1 1 … 0)t(Shift 3)

Our testing matrix is defined by

	�G×G = (q+G×	 q	G×	 q�G×	 … qGZ�G×	 qGZ�G×	 qGZ	G×)u,

That is,

 vG×G =

w
x
x
x
x
x
y1 1 1 0 … 0
0 1 1 1 … 0
0 0 1 1 … 0
⋮ ⋮ ⋮ ⋮ … ⋮
0 … 0 1 1 1
1 … 0 0 1 1
1 … 0 0 0 1{

|
|
|
|
|
}

 (5)

We define ~ � �F�F � cF�1. Iff all the elements in ~ are

either 1 or 0, then it is reparable.
If the detection vector is directly fast bandwidth

reparable, as shown in Fig. 5, we invoke the Fast
Bandwidth Algorithm to correct the error and regenerate the
error-free nodes. Suppose node m has failed. A new matrix
named	�� is built:

 �a � (Va̅Z� Va̅Z	 Va̅^	 Va̅^�)u (6)

That is,

�a �

w
x
x
y
J〈aZ�〉] K〈aZ	〉] J〈a〉] $ K〈a〉]
J〈aZ	〉] K〈a〉] J〈a^	〉] $ K〈a^	〉]
J〈a^	〉] K〈a^�〉] J〈a^�〉] $ K〈a^�〉]
J〈a^�〉] K〈a^�〉] J〈a^�〉] $ K〈a^�〉]{

|
|
}
 (7)

From the ��	matrix, we know the repair of one failed

node,	��, requires that access ��Z�, 	��Z�, 	��^�, ��^�.	
Since we have n nodes in total, we define a matrix N as:

 �k�k �

w
x
x
yN+ N	

⋱
NkZ	{

|
|
}
 (8)

Figure 9 shows the entire system procedure for a fast

bandwidth application applied to a Big Data source. After

we encode our information source, we place it in the cloud

using Storage as a Service (SaaS) paradigm. Storage nodes

fail randomly. We apply a polling procedure for pervasive

node detection. When node errors are detected, their

locations are recorded and communicated to our correction

system “SaaS Database.” The vector, c	, passed formulate a

binary rule that determines whether we can apply Direct

Fast Bandwidth repair or not. If yes, we execute the

algorithm. If not, we use MDS pre-correction before we run

the fast algorithm.

4 Conclusion

We have formulated an innovative cloud application

that operates on Big Data in a distributed processing

framework, using Map-reduce, while simultaneously

operating at the optimum fast bandwidth rate. In Big Data

storage systems, there is more than one node that can fail.

In this case, we illustrated an optimal joint correction via

maximally distance seperable codes and simple

regenerative fast bandwidth codes in the cloud. Thus,

severe error patterns that cannot be repaired by the simple

regnerative code can be correct by the theoretical optimal

MDS code. We also simulate the bandwidth performance

and that it outperforms the prior methods of [8]. Moreover,

we propose an innovative, patented, map-reduce algorithm

ideal for fast bandwidth repair in cloud data center storage.

Table 1. Cloud Application Parmeters

Figure 1. Timeline Latency Model

0

time (sec)

MDS reconstruction

Computational latency

Fast Bandwidth

Reconstruction

Computational latency

Targeted Mean

Reconstruction latency

of Big-Data

Time Period of

successive Big-Data

reconstructions

T

Tper

2015 10th System of Systems Engineering Conference (SoSE)

401

5

Figure 2. System Architecture- FMR code is implemented

in Task Tracker and the dynamic configuration parameters

are communicated from Name Node to Data Nodes through

Job Tracker.

Figure 3. Cloud encode and reconstruction procedure for a

given Big Data size, �, and error arrival rate, �, into

memory.

Figure 4. Upper Bound Computational Latency of Big Data

Reconstruction Versus Big Data Error Check Period, Tper.

Figure 5. MDS Pre-coding and Sparse Code construction

Figure 6. Example of (n,k) SRC coding.

Figure 7. Example of finite field addition.

Figure 8. (n,k) SRC storage nodes placement [9]

Big Data

Data Set

≈≈≈≈1

Exabyte Big-Data

Decom-

position

1

P

Hadoop

(N,k) MDS

+ Sparse

code

1

P

N nodes

per MDS

System
Node

Failure

Detect-

ion

Fast

Corre

ction

N

1

1/T: fast

bandwidth

correction rate

1/T: Failure

Detection rate

Error rate

injection model

Write back

1

P

1

P

N

1

Mapped
Correcting Set Reduced

Output
8 Nodes

New Node Corrected Nodes
Node ID,

(X, Y, X xor Y)

Correcting Set
New Node

Corrected Nodes

0,

0,0,

0,(x0,

(x0,(x0,

(x0,y1,

y1,y1,

y1,s2),

s2),s2),

s2),0

00

0

1,

1,1,

1,(x1,

(x1,(x1,

(x1,y2,

y2,y2,

y2,s3),

s3),s3),

s3),0

00

0

2,

2,2,

2,(x2,

(x2,(x2,

(x2,y3,

y3,y3,

y3,s4),

s4),s4),

s4),1

11

1

3,

3,3,

3,(x3,

(x3,(x3,

(x3,y4,

y4,y4,

y4,s5),

s5),s5),

s5),0

00

0

4,

4,4,

4,(x4,

(x4,(x4,

(x4,y5,

y5,y5,

y5,s6),

s6),s6),

s6),0

00

0

5,

5,5,

5,(x5,

(x5,(x5,

(x5,y6,

y6,y6,

y6,s7),

s7),s7),

s7),0

00

0

6,

6,6,

6,(x6,

(x6,(x6,

(x6,y7,

y7,y7,

y7,s0),

s0),s0),

s0),1

11

1

7,

7,7,

7,(x7,

(x7,(x7,

(x7,y0,

y0,y0,

y0,s1),

s1),s1),

s1),0

00

0

0,

0,0,

0,(x0,

(x0,(x0,

(x0,y1,

y1,y1,

y1,s2),

s2),s2),

s2),0

00

0

0,

0,0,

0,(x0,

(x0,(x0,

(x0,y1,

y1,y1,

y1,s2),

s2),s2),

s2),0

00

0

1,

1,1,

1,(x1,

(x1,(x1,

(x1,y2,

y2,y2,

y2,s3),

s3),s3),

s3),0

00

0

2,

2,2,

2,(x2,

(x2,(x2,

(x2,y3,

y3,y3,

y3,s4),

s4),s4),

s4),1

11

1

3,

3,3,

3,(x3,

(x3,(x3,

(x3,y4,

y4,y4,

y4,s5),

s5),s5),

s5),0

00

0

4,

4,4,

4,(x4,

(x4,(x4,

(x4,y5,

y5,y5,

y5,s6),

s6),s6),

s6),0

00

0

4,

4,4,

4,(x4,

(x4,(x4,

(x4,y5,

y5,y5,

y5,s6),

s6),s6),

s6),0

00

0

5,

5,5,

5,(x5,

(x5,(x5,

(x5,y6,

y6,y6,

y6,s7),

s7),s7),

s7),0

00

0

6,

6,6,

6,(x6,

(x6,(x6,

(x6,y7,

y7,y7,

y7,s0),

s0),s0),

s0),1

11

1

7,

7,7,

7,(x7,

(x7,(x7,

(x7,y0,

y0,y0,

y0,s1),

s1),s1),

s1),0

00

0

0,

0,0,

0,(x0,

(x0,(x0,

(x0,y1,

y1,y1,

y1,s2),

s2),s2),

s2),0

00

0

2,

2,2,

2,(s2+y2,

(s2+y2,(s2+y2,

(s2+y2,

s3+x3,x4+y4),1

s3+x3,x4+y4),1s3+x3,x4+y4),1

s3+x3,x4+y4),1

6,

6,6,

6,(s6+y6,

(s6+y6,(s6+y6,

(s6+y6,

s7+x7,x0+y0),1

s7+x7,x0+y0),1s7+x7,x0+y0),1

s7+x7,x0+y0),1

2,

2,2,

2,(x2',

(x2',(x2',

(x2',y3',

y3',y3',

y3',s4'),

s4'),s4'),

s4'),0

00

0

6,

6,6,

6,(x6',

(x6',(x6',

(x6',y7',

y7',y7',

y7',s0'),

s0'),s0'),

s0'),0

00

0

50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

: N=1000, P0=1.4901e+07, M=64MB

: N=5000, P0=2.9802e+06, M=64MB

: N=2000, P0=7.4506e+06, M=64MB

: N=2000, P0=1.4901e+07, M=32MB

1%Tper 1%Tper1%Tper1%Tper

U
p

p
e

r
B

o
u

n
d

 C
o

m
p

u
ta

ti
o

n
a

l D
e

la
y

o
f

B
ig

 D
at

a
R

e
co

n
st

ru
ct

io
n

Big Data Error Check Period, Tper, in seconds

ber per sec/512 bytes

Information

Source Coding: MDS

precoding
Sparse

Code

Node 1 Node 2 Node 3 Node n

2015 10th System of Systems Engineering Conference (SoSE)

402

6

Figure 9. Fast Big Data Bandwidth Algorithm

References

[1] A. Hadoop. Available: http://hadoop.apache.org/

[2] J. Venner, Pro Hadoop, 2009.

[3] H. Weatherspoon and J. Kubiatowicz, "Erasure Coding Vs.
Replication: A Quantitative Comparison," presented at the Revised
Papers from the First International Workshop on Peer-to-Peer
Systems, 2002.

[4] K. Shvachko, K. Hairong, S. Radia, and R. Chansler, "The Hadoop
Distributed File System," in Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, 2010, pp. 1-10.

[5] J. Dean and S. Ghemawat, "MapReduce: simplified data processing
on large clusters," Commun. ACM, vol. 51, pp. 107-113, 2008.

[6] O. O. S. C. C. Software. Available: http://www.openstack.org/

[7] G. Wang and Y. Zhao, “A Fast Algorithm for Data Erasure,” ISI
2008 IEEE International Conference on Intelligence and Security
Informatics, pp. 245-256, 2008.

[8] D.S. Papailiopoulos, J. Luo, A.G. Dimakis, C. Huang, and J. Li,
“Simple Regenerating Codes: Network Coding for Cloud Storage,”
The 31st Annual IEEE International Conference on Computer
Communications: Mini-Conference, pp. 2801-2805, 2012.

[9] W. Ailan, L. Yunqiang, Z. Xiaoyong, “Analysis of Corresponding
Structure of Differential Branch of MDS Matrixes on Finite Field,”
2010 Third International Conference on Intelligent Networks and
Intelligent Systems, pp. 381-384, 2010.

[10] Y. Shang, D. Wang, X. Xia, “Flexible Signal Space Diversity
Techniques From MDS Codes With Fast Decoding,” 2010
Proceedings IEEE Globecom, pp. 1-5, 2010.

[11] Brian Kelley and Xue Qin, Fast Bandwidith Reconstruction of Big
Data Sets in a Cloud Computing Environment Using a Parallel Map
Reduce Framework, Provisional Patent, serial number , 62/090,868,
official filing date 12/11/2014.

[12] Xue Qin, A Fast Map Reduce Algorithm for Exact-Repair
Reconstruction of Big-Data in Cloud Storage, MS Thesis, University
of Texas at San Antonio, Dec. 2014.

[13] Y. Itoh, M. Momodomi, R. Shirota, Y. Iwata, R. Nakayama, R.
Kirisawa, et al., "An experimental 4 Mb CMOS EEPROM with a
NAND structured cell," in Solid-State Circuits Conference, 1989.

Digest of Technical Papers. 36th ISSCC., 1989 IEEE International,
1989, pp. 134-135.

2015 10th System of Systems Engineering Conference (SoSE)

403

