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Abstract—An important tool in modelling and reasoning under
uncertainty is the Dempster Shafer theory (DST) of evidence.
Its widespread application can be attributed to its capability to
handle uncertainty due to randomness and non-specificity. The
Dempster Shafer (DS) rule of combination offers opportunity
to fuse pieces of evidence from different independent sources.
However, the DS rule of combination is often prone to counter-
intuitive results when pieces of evidence are highly conflicting.
To overcome this issue, several methods have been proposed. In
this work, we propose a new rule of combination based on the
average belief function. The performance of the proposed method
was compared with some existing approaches using numerical
examples.
Keywords -Uncertainty, Dempster Shafer rule of combination, belief
function.

I. INTRODUCTION

A fundamental issue in reasoning and knowledge represen-
tation under uncertainty is how to fuse pieces of evidence in an
appropriate manner. The Dempster Shafer rule of combination
of evidence has been widely deployed to combine pieces of
evidence from different independent sources. This tool suffers
a major limitation due to its susceptibility to counter- intuitive
results when the pieces of evidence are highly conflicting [2],
[1]. An attempt to address this problem has given birth to
two schools of thought among researchers. One school of
thought believe in the modification of the traditional Dempster
Shafer rule of combination. This has led to a few alternative
combination rules. In [3], a modified approach was proposed
where the conflicting mass is assigned to the unknown state.
Similarly, in [4], an alternative method was proposed, in his
case, the conflicting mass is assigned to the empty set. A dis-
junctive consensus rule was proposed in [5]. The other school
of thought believes in the modification of basic probability of
assignment (bpa). To overcome this, they do the preprocessing
of evidence prior to the application of Dempster combination
rule. A simple average combination rule was proposed in [6].
In [7], a weighted combination of evidence was proposed. All
these ideas have produced good results.

In this work, we propose a new combination rule based on
error measure between every belief function and the average
belief function. In this approach, weights are assigned to each
body of evidence based on the value of error between their
belief functions and the average belief function of all pieces
of evidence. The smaller the deviation, the higher the weight

of the associated piece of evidence. The obtained weight is
then used to compute the weighted average of evidence before
applying the traditional Dempster-Shafer rule of combination.
The rest of the paper is organized as follows: Section II dwells
on the basics of Dempster- Shafer theory of evidence, the focus
of section III is the new combination rule. Numerical examples
are presented in section IV to illustrate the performance of the
proposed method. The focus of Section V is the presentation
of simulation results and discussion. Finally, in section VI, the
conclusion is presented.

II. DEMPSTER- SHAFER THEORY (DST)
DST is a mathematical theory of evidence proposed in [8],

which is an extension of the work in [9]. It is a generalization
of probability theory. In evidence theory, probabilities are
assigned to subsets instead of mutually exclusive singletons.
Evidence theory can handle uncertainty better than probability
theory [3]. Evidence is characterized by functions which
include: basic probability assignment (BPA), belief function,
plausibility function, and commonality function[10].

A. Basic Functions

Let Ω = {θ1, θ2, ..., θN} be the frame of discernment, a set
of mutually exhaustive and exclusive hypothesis. A power set
2Ω is the set of all possible subsets of Ω.
For all A ⊆ Ω, the mass function also known as basic
probability of assignment m : 2Ω → [0, 1] satisfies the
following conditions: ∑

A⊆Ω

m(A) = 1 (1)

m(∅) = 0 (2)

The belief function Bel : 2Ω → [0, 1] is defined as

Bel(A) =
∑
B⊆A

m(B) (3)

The plausibility function Pl : 2Ω → [0, 1] is defined as

Pl(A) =
∑

A∩B 6=∅

m(B) (4)

The commonality function Q : 2Ω → [0, 1] is defined as

Q(A) =
∑
B⊇A

m(B) (5)
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B. DS Rule of Combination

The DS combination rule was introduced in [8]. It provides
a mathematical framework to obtain combined evidence when
multiple independent pieces of evidence are available. Let m1

and m2 be mass functions produced by two independent pieces
of evidence defined on the same frame of discernment Ω. The
combined mass is defined as [8]

m(A) =

∑
X∩Y =Am1(X)m2(Y )

1−
∑

X∩Y =∅m1(X)m2(Y )
(6)

∀A,X, Y ⊆ Ω and A 6= ∅.

C. Evidence Distance

Evidence distance is used to measure lack of similarity
between two pieces of evidence. In [11], a distance function
was presented to measure distance among the basic probability
assignments (bpa). The distance between two mass functions
m1 and m2 denoted by d(m1,m2) can be defined as

d(m1,m2) =

√
1

2
(−→m1 −−→m2)TD(−→m1 −−→m2) (7)

D(A,B) =
|A ∩B|
|A ∪B|

A,B ⊆ Ω (8)

Where −→m1 and −→m2 are vector representations of m1 and m2

respectively.D(A,B) is a 2N by 2N matrix. The measure of
error for belief function approximation adopted in [12], is a
kind of distance function which is defined as [13] .

d(m1,m2) =
∑
A⊆Ω

|Bel1(A)−Bel2(A)| (9)

III. THE NEW COMBINATION RULE

The proposed method is based on the error measure between
a given belief function and the arithmetic mean of all belief
functions. A body of evidence whose belief function is closer
to the average belief function is assigned a higher weight than
the one that is farther away from the average belief function.
Consider an m by n matrix µ, with m propositions and n
pieces of evidence. Such that each column represents the basic
probability assignment from each evidence.

µ =


µ11 . . . µ1j . . . µ1n

...
...

...
...

...
µi1 . . . µij . . . µin

...
...

...
...

...
µm1 . . . µmj . . . µmn

 (10)

The proposed methods entails the following steps
• Due to one to one mapping among mass, belief, and

plausibility functions [8], we can use the belief function
to determine the weight of each piece of evidence. There-
fore, the first step is to transform the basic probability
assignment of each evidence into belief function.

• Construct a m by n matrix p, with m propositions and
n pieces of evidence, such that each column represents

belief function for each evidence. i.e. pij is the belief
given to proposition i by evidence j.

p =


p11 . . . p1j . . . p1n

...
...

...
...

...
pi1 . . . pij . . . pin
...

...
...

...
...

pm1 . . . pmj . . . pmn

 (11)

• Compute the average belief of evidence, such that the
average belief to each proposition is defined as

p̄i =
1

n

n∑
j=1

pij , i = 1, 2, ...,m, andj = 1, 2, ..., n (12)

• Adopting a distance measure similar to the one defined
in [12], for every belief function, compute its deviation
from the average belief function, which is denoted by αj

and defined as

αj =
m∑
i=1

|p̄i − pij | (13)

• Calculate the weight βj of every belief function and it is
defined as.

βj = exp(−αj) (14)

• The normalized weight becomes

wj =
βj∑n
l=1 βl

, l, j = 1, 2, ..., n (15)

Thus the weight vector becomes

w = [w1, w2, ..., wn]T (16)

• Compute the Weighted Average of Evidence mwae as

mwae = µw (17)

• Apply DS combination rule to mwae(n− 1) times [6].

IV. NUMERICAL EXAMPLES

In this section, we present two numerical examples to
demonstrate the performance of the proposed method. The
performance of the new combination rule is then compared
with some existing methods.

A. Example I

Suppose the actual target being observed by a multi-sensor
target recognition system comprising of five sensors is target
A. Let us assume that the target belongs to one of the three
classes A, B, and C. The information reported by the five
different sensors are shown in Table I

B. Example II

This example is taken from [14]. The frame of discernment
is Ω = {A = Fighter,B = Bomber, C = Commercial}.
The basic probability assignment from the five pieces of
evidence is shown in Table II.



Table I
NUMERICAL EXAMPLE I

Proposition m1 m2 m3 m4 m5

m(A) 0.41 0.00 0.58 0.55 0.60
m(B) 0.29 0.90 0.07 0.10 0.10
m(C) 0.30 0.10 0.00 0.00 0.00

m(AC) 0.00 0.00 0.35 0.35 0.30

Table II
NUMERICAL EXAMPLE II

Proposition m1 m2 m3 m4 m5

m(A) 0.50 0.00 0.55 0.55 0.60
m(B) 0.20 0.90 0.10 0.10 0.10
m(C) 0.30 0.10 0.35 0.35 0.30

V. SIMULATION RESULTS AND DISCUSSION

A. Simulation Results

After applying (10) − (15), the normalized weight for
example I are w1 = 0.3355, w2 = 0.0458, w3 = 0.1901, w4 =
0.2143 and w5 = 0.2143. The weights are then used to
modify the evidence by using (17) to compute the weighted
average of evidence. The results of the weighted average
of evidence is given as mwae(A) = 0.4943,mwae(B) =
0.1946,mwae(C) = 0.1052,mwae(AC) = 0.2059. With
the application of the traditional Dempster shafer rule of
combination 4 times, the final fused masses are m(A) =
0.9813,m(B) = 0.0016,m(C) = 0.0149,m(AC) = 0.0022.

Similarly, for example II, we obtained the following normal-
ized weights: w1 = 0.3199, w2 = 0.0369, w3 = 0.2144, w4 =
0.2144 and w5 = 0.2144. The corresponding weighted aver-
age evidence is given as mwae(A) = 0.5244,mwae(B) =
0.1615,mwae(C) = 0.3141. The final fused masses are
m(A) = 0.9261,m(B) = 0.0026,m(C) = 0.0713.

Figure 1. The comparison of combined BPA for proposition A for Example
I.

Figure 2. The comparison of combined BPA for proposition A for Example
II.

B. Discussion

It is very noticeable, that evidence m2 is highly conflicting
with the remaining sources of evidence and therefore it is
considered as highly unreliable. This is because its weight
is just 0.0458 and 0.0369 for example I and II respectively.
The proposed method was compared with the Dempster-Shafer
rule, Murphy simple average and Deng weighted average
method. Our proposed method competes favorably with Deng
approach and produce more reasonable results than the Demp-
ster’s rule and Murphy’s approach. The results of the two
examples are shown in Table III and IV respectively. The
comparison of the combined mass by different combination
rules for proposition A is shown in Figure 1 and Figure 2 for
Example I and II respectively.

The results for proposition A using Dempster Shafer’s rule
is represented by the blue legend, since the final fused mass
is zero, it cannot be observed from the bar plot as shown in
Figure 1 and Figure 2. The inability of the Dempster’s combi-
nation rule to produce reasonable results when faced with con-
flicting pieces of evidence was obvious. The results generated
based on Dempster’s rule were illogical and counterintuitive
as portrayed by the two examples. The combined mass for
proposition A using Dempster’s rule remains at zero regardless
of updating the fused mass with the remaining pieces of
evidence. In example I, our proposed method performs better
than Murphy s approach, however, the performance of Dengs
method is slightly better than ours. In case of Example II,
our proposed method is better than all other methods. The
performance of Deng’s method is very close to ours. The fused
masses produced by Murphy, Deng and our approaches agree
with the intuition.

VI. CONCLUSION

In this work, a new combination rule based on the error
measure between the average belief function and every belief



Table III
FUSED RESULTS FOR NUMERICAL EXAMPLE I

Methods m1 −m2 m1 −m3 m1 −m4 m1 −m5

Dempster [9] A 0.0000 0.0000 0.0000 0.0000
B 0.8969 0.6350 0.3321 0.1422
C 0.1031 0.3650 0.6679 0.8578

Murphy [6] A 0.0964 0.4938 0.8362 0.9620
B 0.8119 0.4180 0.1147 0.0210
C 0.0917 0.0792 0.0410 0.0138

AC 0.0000 0.0082 0.0081 0.0032
Deng [7] A 0.0964 0.6021 0.9330 0.9851

B 0.8119 0.2907 0.0225 0.0017
C 0.0917 0.0991 0.0354 0.0096

AC 0.0000 0.0082 0.0092 0.0039
Ours A 0.0964 0.5984 0.9141 0.9813

B 0.8119 0.2632 0.0256 0.0016
C 0.0917 0.1358 0.0560 0.0149

AC 0.0000 0.0027 0.0043 0.0022

Table IV
FUSION RESULTS FOR NUMERICAL EXAMPLE II

Methods m1 −m2 m1 −m3 m1 −m4 m1 −m5

Dempster [9] A 0.0000 0.0000 0.0000 0.0000
B 0.8571 0.6316 0.3288 0.1404
C 0.1429 0.3684 0.6712 0.8596

Murphy [6] A 0.1543 0.3500 0.6027 0.8273
B 0.7469 0.5224 0.2627 0.0863
C 0.0988 0.0792 0.1346 0.0863

Deng [7] A 0.1543 0.5816 0.8060 0.9149
B 0.7469 0.2439 0.0482 0.0082
C 0.0988 0.1745 0.1458 0.0769

Ours A 0.1543 0.6612 0.8433 0.9261
B 0.7469 0.1572 0.0196 0.0026
C 0.0988 0.1817 0.1371 0.0713

function was proposed. The proposed method assigns weight
to individual pieces of evidence based on the measure of
deviation between their belief function and the average belief
function. The closer the belief function of an evidence to
the average belief function of all pieces of evidence, the
higher the weight and vice versa. The proposed method was
able to overcome the counter-intuitive issue associated with
the traditional Dempster Shafer rule of combination. Two
numerical examples were used to verify the rationality of the
proposed method, and its performance was comparable with
some of the existing alternative methods.
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