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Abstract—Advanced driver assistance systems are required to
detect latent hazards posed by surrounding vehicles and generate
an appropriate response to enhance safety. Lane changes consti-
tute potentially risky maneuvers, as drivers involved encounter
latent hazards due to surrounding vehicles. A careful study of
lane change behavior is therefore essential in identifying potential
abnormalities that may lead to various hazards, during the
process of a lane change. In this study, an anomaly detection
technique is used to compare snapshots of normal and dangerous
lane change maneuvers, to identify the abnormal instances. A
one-class support vector machine is used and tested for novelty
identification of naturalistic driving study data. The results show
that the technique is able to detect dangerous lane changes
with high accuracy. In addition, results suggest that dangerous
behavior could occur before, after or during a lane change
maneuver.

I. INTRODUCTION

According to US Department of Transportation (DOT)
traffic accidents are the cause for around 37,000 fatalities and
230.6 billion dollars in economic loss every year in the US [1].
Most of these accidents are due to reckless driving (speeding,
distractions, etc.). These statistics magnify the need for an
advanced driver assistance system (ADAS) that is able to take
over partial or full control of the vehicle when necessary in
order to avoid possible hazards.

One of the tasks of driver assistance system is to generate a
situational awareness of the surroundings by predicting other
drivers’ actions and making decisions to avoid a possible
crash. In addition to predicting the exact action, detection of
abnormal or dangerous behaviors in high-speed and interactive
situations such as lane changes will increase the level of
caution exercised by the ADAS.

In general, any action during driving that may result in harm
to the vehicle or its occupants, other road users (pedestrians
and other drivers) as well as various installations on the road
may be considered dangerous behavior. Dangerous driving
may be caused by a driver who is aggressive, inexperienced
or distracted. It may also result from a reaction to a sudden
change in the road environment during driving.

Lane changes constitute one of the most dangerous ma-
neuvers compared to others because acceleration of vehicles
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involved is required. In addition, driver must scan various
sections of the roadway simultaneously before, during and
after the lane change. An example of normal and dangerous
lane changes is shown in Fig. 1. In the top picture, the red
vehicle performs a lane change while there is enough of safety
gap between the surrounding vehicles on the desired lane. In
the bottom picture, the red vehicle plans to change its lane
without considering the safety space. It may increase the speed
to fit in the small gap in the desired lane, which increases the
risk of accident for all the surrounding vehicles.

In this study, Support Vector Machine (SVM) classification
is used to analyze lane change maneuvers in a naturalistic
driving dataset and identify abnormal instances in different
stages of a lane change.

Fig. 1: Examples of (a) normal and (b) dangerous lane change

II. LITERATURE REVIEW

Nowadays vehicles are equipped with a variety of sensors
and other devices to collect and store information during the
drives. These devices improve safety while driving and the data
collected in the process can be used to study driver behavior.
Since driving can be seen as a very complicated sequence
of activities, modeling driver behavior could be accomplished
using two broad categories of approaches. In one category,
several behaviors are modeled with low accuracy representing
a wider scope. In the other category, approaches have narrow
scope of behaviors but result in high accuracy [2]. They are
more practical because they allow the practitioner to focus on
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more complicated and potentially dangerous scenarios. Most
of techniques technique reviewed in this paper are from this
category.

Various probabilistic methods have been used for driver
behavior modeling. For instance, a Bayesian model was devel-
oped for prediction of the driving task [3]. Some approaches
have specifically focused on modeling a driver behavior at
intersections using rule based estimation and Hidden Markov
Model (HMM) in [4] and [5] respectively. In [6], a model
based on multi-class Support Vector Machines (SVM) and
statistical feature extraction is proposed for estimation of
driver behavior. In [7] and [8], a fuzzy logic based technique is
introduced for driver action estimation at intersections, which
considers the order of data in time unlike most of the driver
models in literature.

As mentioned before, lane change is one of the important
scenarios in the intelligent transportation field and it has been
widely used for classification and modeling purposes. Bonnin
et al [2] proposed a computational architecture based on a
Scenario Model Tree (SMT) that combines several behavior
classifiers hence giving it the ability to anticipate behavior of
the surrounding vehicles in different scenarios.

Prediction of the driver behavior is beneficial for driver and
ADAS decision making, but it depends on sensors and devices
for vehicle to vehicle (V2V) and vehicle to infrastructure (V2I)
communications. Moreover, most of the techniques presented
earlier require time-series data from the surrounding vehicles
to result in an accurate prediction. When all the essential
devices or data are not available, detection of abnormal or
dangerous maneuvers generates a basic situational awareness
which has a large impact in maintaining safety.

In [9], a safety model for lane change is developed based on
lane departure warning that can be used for decision making
about the safety of the maneuver and may help prevent crashes
occurring during lane changes on highways. However, this
model is not general and only considers one specific scenario
in which the driver is distracted and there are several cars on
the road.

In [10], an assistance system is developed with the aim of
reducing drivers’ uncertainty during lane change in an attempt
to increase traffic safety. In this study, participants performed
lane changes under various conditions in a driving simulator
experiment. However, the results are based on a simulator
experiment, which renders the study not universal for the
design of an assistance system. The authors in [11] and [12]
have developed a two stage reasoning based framework that
uses driving event recognition to determine various levels of
danger for different scenarios. Instead of using labeled data,
the danger level is derived from a Fuzzy Inference System
(FIS) with a hierarchical decision strategy. Then, Hidden
Markov Models are trained for seven scenarios including
lane changes. However, since the danger level is inferred
from unlabeled data and the FIS was designed based on the
authors’ opinion, it is subjective and not likely to be a reliable
indication. In addition, a HMM based classifier is proposed
in [13] which is able to detect dangerous cut-in behaviors on

highways. This paper also uses decisive features of the lane
change behavior to improve the classification performance.
However, this technique requires time-series, and will not
perform as well in case it receives insufficient data.

The main challenge in identification of dangerous driving
behavior in lane change is developing a framework which
includes almost all the dangerous scenarios. However, such
a framework is impossible to define since each dangerous
maneuver is unique and situation-dependent. Therefore, one-
class SVM, which is a novelty detection classifier is used
to distinguish between normal and dangerous lane changes.
The classification method presented in this study is based
on the work in [14] for analysis of flight data. This study
utilizes several parameters that are measured by the car sensors
during the drive. The goal is to analyze the data at various
sections during a lane change. If a change in normality is
detected between two sections, a more detailed analysis can
be performed between those points.

The rest of this paper is organized as follows. In section
III the proposed classifier system is explained. Section IV
describes the naturalistic datasets utilized as well as the sim-
ulation setup, results and discussion. Finally, the conclusion
and future work are given in section V.

III. PROPOSED METHOD

In this section, the classifier used for distinguishing abnor-
mal from normal lane changes is introduced.

A. One-Class Classifier

One-class classification is used in machine learning to
differentiate objects of one class from the remaining objects,
after being trained by objects of that specific class. This type of
classification is more challenging than traditional classification
because the classifier cannot learn from objects of all other
classes. This technique has several applications in literature
including outlier detection, anomaly detection and novelty
detection [14]. One-class classification is chosen in this study
because it is able to detect anomalies. As described earlier,
one-class classifier can handle cases where one class has well
sampled data, while the other class has data of very diverse
samples. In this case, it is difficult to determine a specific class
for the poorly sampled data.

B. Support Vector Machine Novelty Detection

Support Vector Machines (SVM) is a supervised machine
learning technique which was first introduced by Boser, Guyen
and Vapnic in 1992. In SVM the margin between class
boundary and training patterns is maximized. This serves as
an alternative to other training methods such as least square
error [15].

A support vector machine develops a hyperplane in higher
dimensional space which transforms a nonlinear classification
into a linear one. Therefore, the separation can be performed
more easily. A “Kernel Function” k(x, y) is used to map the
variables into the higher dimensional space.
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In this problem let x1, x2, . . . , xl ∈ Rn be the “normal
driving” training data, and φ : R → F be the mapping
that transforms the training data into a higher feature space
F . The kernel k(x, y) = (φ(x), φ(y)) is a positive definite
function and utilizes the mapping φ. In order to avoid wide
distances in larger feature spaces, a Gaussian kernel function
k(x, y) = exp(−‖x− y‖2/2σ2) is chosen here to restrain the
effect of distance, as since its value decreases with distance
but ranges only from 0 to 1. Then, the objective function is
defined by maximizing the number of training points within
the margin (minimizing the training error) by solving the
following quadratic programming problem using Lagrange
multipliers:

min
ω∈F,ξ∈Rl,ρ∈R

1

2
‖ω‖2 + 1

νl

l∑
i=1

ξi − ρ

subject to (ω.φ(xi)) ≥ ρ− ξi ξ ≥ 0

(1)

Where ρ is the margin variable, ξi the individual error term,
ω a weight factor in F , and ν is the fraction of the training set
to be regarded as outliers [14]. Finally, the decision functions
is given by:

f(x) = sgn

(
Ns∑
i=1

αik(si, x)− ρ0

)
(2)

Where αi are the Lagrange multipliers which are weighted
in the decision function. Ns is the number of support vectors,
si represents a support vector, and ρ0 is obtained from the
optimization problem.

The appropriate kernel and its associated parameters must
be chosen by the user for each problem. Also, ν which is the
fraction of the training data to be categorized as outliers is
chosen instead of an error penalty. In this paper, the toolbox
{e1071} for R is used for programming the SVM classifier
[16].

C. Normal and Abnormal Lane Change Detection

The purpose of this method is to differentiate abnormal
driving from normal driving, specifically for lane change
scenarios.

In the proposed approach, a lane change maneuver is
divided into multiple discrete segments, and for each segment
one classifier is trained using the normal driving data. Later,
both normal and dangerous testing sets are used on the models
to evaluate the performance of the classifier. Therefore, the
sections where abnormality often occurs can be identified and
used for more detailed analysis.

1) Naturalistic Driving Data: The dataset used for training
and testing the one-class SVM consists of two naturalistic
driving study (NDS) datasets. The normal driving data is
manually extracted from the 2nd Strategic Highway Research
Program (SHRP 2) data samples, and the dangerous driving
data is obtained from the 100-Car naturalistic driving study
instances as it was suggested in [17].

SHRP 2 NDS was conducted with 3,000 volunteer drivers
aged 16-98 over 3 years in several sites across the United
States. Vehicles used had unprecedented scale of sensors
installed on them. The sensors collected data on driver and
vehicle performance as the volunteers go about their ordinary
driving routines. For data extraction, the SHRP2 videos were
watched and lane changes that with no visible risk (e.g. abrupt
or near crash events) were marked as normal lane changes.

The 100-Car Naturalistic Driving Study database contains
many extreme cases of driving behavior and performance, in-
cluding severe fatigue, impairment, judgment error, risk taking,
aggressive driving, and traffic violations [18]. The dangerous
dataset was extracted by studying the event description of 100-
car set and marking the near crash lane change events that the
subject vehicle is at fault

IV. SIMULATION AND RESULTS

In this section, performance of the proposed method is eval-
uated using the “normal” and “dangerous” driving datasets.
Therefore, the evaluation metrics, model training, and discus-
sion of the results are presented here.

A. Performance Metrics

A confusion matrix is used to evaluate the classification
performance in this study. There are four parameters in this
matrix; true positive (TP) is the number of correctly identified
positive instances, true negative (TN) is the number of cor-
rectly identified negative instances, false positive (FP) is the
number of incorrectly identified positive instances, and false
negative (FN) is the number of incorrectly identified negative
instances.

Accuracy (3) is one of the measures used to evaluate the
performance of a classifier. However, in case the two classes
of data are not balanced in size, its value will be biased
toward the larger set which is misleading. Thus, additional
measures are used to thoroughly describe the performance.
The measures include Recall, Specificity, and Geometric mean
(G-mean) [19], [20].

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Recall, which is also known as Sensitivity measures the
number of positive instances correctly classified.

Recall = Sensitivity =
TP

TP + FN
(4)

Specificity is used to evaluate the ability of a classifier in
recognizing negative samples.

Specificity =
TN

TN + FP
(5)

Geometric mean is used to assess the balanced classification
performance between positive and negative classes.

Gmean =
√
Recall × Specificity (6)
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The error metric used in this study is the balanced error
(BE). It is able to check the accuracy of positive and negative
predictions simultaneously.

BE =
1

2
×
(

FP

FP + TN
+

FN

FN + TP

)
(7)

The BE serves as a useful error metric in this study due to
the inconsistency between the positive and negative datasets.

B. Model Training and Simulation

In this paper, normal and abnormal characteristics of “left
to right” lane changes are analyzed due to the possibility
of blind-spots in such maneuvers which makes them more
challenging than right to left lane changes. A total of 65
lane change maneuvers are collected for the “normal” and
“dangerous” classes combined. 25 events belong to the normal
set while the remaining 40 are from the dangerous set. The
training to testing set ratio is 4:1 (that is 80% of data used
for training and 20% for testing), so normal lane change has
20 events for training and 5 sets for testing. All the train and
test samples have lengths of 10 seconds and are split into 10
segments as mentioned in section IV. The number of segments
varies depending on length of available data and the trade off
between accuracy and computation speed. Here, each segment
corresponds to one second during the lane change. Therefore,
each section is represented by a training set and testing set
that contains data taken at that segment. The parameter values
in the normal set were scaled to [0,1], in order to prevent the
features with relatively larger values from saturating the SVM
model. On the other hand, it is necessary that the abnormal
values in the dangerous set are not lost during normalization.
Therefore they are scaled according to the scaling values
obtained from the train set.

The variables used for classification of lane change are ve-
locity, yaw-rate, and both longitudinal and lateral acceleration.
Here, the mean values of velocity and yaw-rate of normal
and dangerous datasets are plotted through ten samples. It can
be seen in Fig. 2 that the average velocity of normal lane
change is kept almost constant during the maneuver, while the
average velocity of dangerous lane changes keeps increasing
which is an indication of risky behavior. It should be noted
that the change in the speed values is due to the differences
in roadways on which the data was recorded. It does not
necessarily imply that normal lane changes are faster than the
dangerous ones. Furthermore, the average yaw-rates plotted in
Fig. 3 demonstrate that yaw-rate changes are more drastic in
dangerous lane changes.

In order to demonstrate the effectiveness of one-class SVM,
its performance is compared with a conventional SVM clas-
sifier. Since conventional SVM has two classes, it must be
trained with both normal and dangerous datasets. The dataset
for the “normal” class is the same as for the one-class support
vector machine (OC-SVM), with 20 sets as training and 5 sets
as testing data. On the other hand, the “dangerous” maneuver
class dataset consists of 30 sets for training data and the
remaining 10 sets as testing sets.

Fig. 2: Comparison of the average velocity in normal and dangerous
(left to right) lane change maneuvers.

Fig. 3: Comparison of average yaw-rate in normal and dangerous
(left to right) lane change maneuvers.

C. Results and Discussion

Once the SVM models are trained for different points of
the lane change maneuver, the test data that consists of 5
normal driving instances and 40 dangerous instances are used
to evaluate the performance of the classifier. The classification
results are presented in Table I.

The third row of the table shows accuracy of segment SVM
models throughout the ten seconds. As all the values are higher
that 80%, and most of them are higher than 91% it can be
concluded that the model has a satisfactory classification per-
formance. However, as there are unequal numbers of instances
in the normal and dangerous testing sets, accuracy is not able
to quantify the classification performance by itself.

Recall, which was defined in (4) shows the percentage of
true (normal) instances correctly classified. Its high values
show that the model is well trained, as it can correctly
classify almost all the normal driving data at all snapshots.
The significance of this measure is to give an indication of a
well trained SVM model. Since the model is trained with only
one class of data, even if it is poorly trained it may still detect
dangerous data as anomalies, but such detection is not useful.

Since the objective of this study is to identify dangerous
lane changes, the ability of the classifier to distinguish be-
tween normal and abnormal behavior is especially important.
Specificity, which is defined in (5), assesses the percentage
of correctly identified negative (dangerous) instances. Table I
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TABLE I: One-class SVM performance measures for Left to Right Lane change

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
Normal Data Prediction 5/5 5/5 5/5 4/5 5/5 5/5 5/5 5/5 5/5 5/5
Dangerous Data Prediction 37/40 36/40 36/40 36/40 37/40 38/40 39/40 39/40 39/40 39/40
Accuracy 0.93 0.91 0.91 0.88 0.93 0.966 0.977 0.977 0.977 0.977
Recall 1 1 1 0.8 1 1 1 1 1 1
Specificity 0.925 0.9 0.9 0.875 0.925 0.95 0.975 0.975 0.975 0.975
G-mean 0.9617 0.948 0.848 0.935 0.961 0.8717 0.987 0.987 0.987 0.987
Balanced Error 0.03 0.05 0.05 0.15 0.03 0.025 0.01 0.01 0.01 0.01

TABLE II: Binary SVM performance measures for Left to Right Lane change

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9 Sample 10
Normal Data Prediction 5/5 5/5 4/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5
Dangerous Data Prediction 7/10 6/10 6/10 7/10 7/10 8/10 6/10 6/10 7/10 8/10
Accuracy 0.8 0.733 0.66 0.8 0.8 0.966 0.733 0.733 0.8 0.866
Recall 1 1 0.8 1 1 1 1 1 1 1
Specificity 0.7 0.6 0.6 0.7 0.7 0.8 0.6 0.6 0.7 0.8
G-mean 0.8366 0.774 0.692 0.836 0.836 0.894 0.774 0.774 0.836 0.894
Balanced Error 0.15 0.2 0.3 0.15 0.15 0.1 0.2 0.2 0.15 0.1

demonstrates that other than two segment models, the rest of
the models have specificity of 90% or higher.

The G-mean (6) and BE (7) are the performance measures
which explain the overall classification of the model regarding
both classes. G-mean has very high values for almost all
the models and BE which is an error metric has very small
values. These measures confirm that the SVM models have
a good classification performance, which is consistent with
observations based on accuracy, sensitivity, and specificity
measures.

Most of the models that detected slightly less numbers of
dangerous lane changes are at 2, 3, and 4 snapshots which are
located around the beginning and middle of the maneuver. It
can be concluded from the Table I that dangerous lane changes
are more similar to normal lane changes around the start of
the maneuver, and therefore they are hard to classify at the
beginning stages. As it gets closer to the middle part of the
maneuver, the danger signs get more obvious and it is easier to
identify a dangerous lane change. As it can be seen in the table,
around samples 6, 7, and 8 almost more than 90% of the events
are correctly identified. Finally, the surprising outcome of this
study is that according to the BE results, even the finishing
part of the maneuver still has some abnormal features and
can easily be classified as dangerous. This is contrary to the
assumption that once the driver has successfully changed the
lane, he/she will resume driving normally.

It has to be noted that even normal lane changes usually in-
clude acceleration and fast reaction to some extent. Therefore,
what differentiates normal from abnormal lane change is not
necessarily the main action of changing lanes, but it could be
due to the actions that happened before or after that. It is inter-
esting that the anomalies in the common misclassified events
between segment models 3 and 4, the dangerous behaviors
were identified during and after the main maneuver (speeding
during the lane change, or sudden change of lane to avoid
hitting another vehicle). The bar plot of the balanced error
(Fig. 4(a)) shows the distribution of classification errors during
the lane change maneuver. It can be seen that the error is
higher around the first half of the maneuver, which is because
of similarities between normal and dangerous behavior, during

changing lanes.

Fig. 4: Balanced error for segment models of OC-SVM (a) and binary
SVM (b) during lane change

The classification results of conventional SVM are shown in
Table II and Fig. 4(b). As it can be seen from the performance
measures, nearly in all the segments the accuracy, specificity
and G-mean are lower and the balanced error is higher than
its corresponding value from the one-class SVM. It can be
inferred that conventional SVM is not as capable of one-class
SVM in finding abnormal instances, as it tries to group a data
point to its most similar group, and does not consider the
existence of an outlier. On the other hand, one-class SVM
detects any point that does not fit its pre-trained model.

For the application of anomaly detection in the driving data,
conventional SVM will not be helpful for two main reasons.
First, a comprehensive abnormal driving dataset may not be
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available for all maneuvers. Also, it is nearly impossible to de-
termine a specific model for dangerous driving, because many
factors can cause a driving maneuver to become dangerous
and each scenario is unique in its own way.

V. CONCLUSIONS

The goal of this paper is to distinguish between normal
and abnormal lane change instances. Since it is not practical
to define a specific model for abnormal lane change, the
classification method utilized here is a one-class support vector
machine which is ideal for detecting abnormality in a set of
well sampled training data. In this study, instead of training
the classifier with the entire observations time series, data
was discretely sampled at ten segments during the maneuver
and then a SVM model was developed for each of the ten
sections. The advantage of this discrete sampling is that an
abnormality profile can be developed for the maneuver. Such
profile provides insight on different stages of the lane change
and an analyst can study the occurrence of abnormality with
greater detail. Moreover, since the classfier requires only data
points for each segment of the maneuver, it is suitable in a
situation that the complete time-series is not available.

The simulation results showed that all the one-class SVM
models in different instances are able to classify normal
driving events correctly and detect dangerous driving events
as well. On the other hand, conventional SVM could classify
most of normal lane changes correctly, but it was not able to
accurately classify the dangerous instances. According to the
SVM model outputs, dangerous behaviors usually happen any
time during a maneuver, not necessarily when the vehicle is on
the lane marks while changing lane. In fact, the results show
that the most dangerous behaviors happen at the beginning and
final stages of a lane change. The abnormality can be further
investigated by performing additional analysis on the results.
The outputs of this step can help the analysts to identify the
most normal and the most dangerous lane change scenarios.

Future work will involve the comparison of the performance
of OC-SVM to that of other classification techniques. A
controller will then be designed for the ADAS not only to
detect a possibly dangerous maneuver at the early stages but
also to execute an action to avoid an accident with minimum
loss.
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