
Event-based Fault Diagnosis for an Unknown Plant

Mohammad Mahdi Karimi, Ali Karimoddini, Alejandro P White, Ira Wendell Bates

Abstract—This paper presents an active-learning technique for
constructing a fault diagnoser for an unknown finite-state
Discrete Event System (DES). The proposed algorithm actively
asks some basic queries from an oracle through which the
algorithm completes a series of observation tables leading to
the construction of the diganoser. The resulting diagnoser is
a deterministic-finite-state automaton, which detects and iden-
tifies occurred faults by monitoring the observable behaviors
of the plant. An illustrative example is provided detailing the
steps of the proposed algorithm.

1. INTRODUCTION

With advances in technologies, autonomous systems are
being used for many different applications. Nevertheless, the
lack of reliability always challenges the deployment of such
autonomous systems [1]–[3]. Therefore, in parallel to efforts
on increasing the degree of autonomy in newly engineered
systems, we have to immensely improve their reliability.

An important step toward improving reliability of au-
tonomous systems is to diagnose fault occurrences in a
timely manner to reduce the effects of faults and recover
the system before it crashes. Considering faults as abrupt
changes in the system, they can be effectively modelled and
handled within Discrete Event Systems (DESs) framework
[4]. A DES plant can be modeled as a set of discrete states
(representing the operation modes of the system), which
may change upon the occurrence of events (changes in
sensor readings, commands, or other abrupt changes in the
system including faults).

In the literature, there are many approaches and tools
available for fault diagnosis for discrete event systems such
as Petri Nets [5]–[10], Process Algebra [11]–[14], State-
charts [15], [16], and Automata Theory [17]–[23]. In all
of these methods, it is assumed that the normal and faulty
models of the system are completely known, which may not
be applicable to many real situations.

To address the fault diagnosis problem for unknown DES
systems, this paper proposes a novel approach to build a

This work is supported by Air Force Research Laboratory and Office of
the Secretary of Defense under agreement number FA8750-15-2-0116, and
US ARMY Research Office under agreement number W911NF-16-1-0489.
The authors are with the Department of Electrical and Computer En-
gineering, North Carolina Agricultural and Technical State University,
Greensboro, NC 27411 USA.
Corresponding author: A. Karimoddini. Address: 1601 East Market
Street, Department of Electrical and Computer Engineering North
Carolina A&T State University Greensboro, NC, US 27411. Email:
akarimod@ncat.edu (Tel: +13362853847).

DES diagnoser through an active-learning process. Inspired
from L∗ Algorithm [24], [25], the proposed active-learning
algorithm collects the required information about the plant
and builds up a deterministic label transition system for
fault diagnosis of the plant. Compared to passive-learning
techniques, where a rich set of information and a complete
set of examples have to be provided for the learner, the
proposed active-learning mechanism actively acquires the
sufficient required information through a teacher, avoiding
redundant information and prior knowledge about system.
The teacher is an expert who can answer some basic queries
about the system and observed strings. With this acquired
information, the algorithm completes a series of observation
tables, which eventually conjectures a correct diagnoser.
Since it is not possible to place sensors to observe and detect
every possible fault, the proposed approach diagnoses faults
by monitoring the performance and external observable be-
havior of the system. The observable behavior of the system
is modeled by the natural projection to the observable event
set of the system. The resulting diagnoser then can be used
for online health monitoring of the system to evaluate its
normal or faulty status. An illustrative example is provided
to explain the details of the developed method.

The rest of the paper is organized as follows. Section
2 formulates the diagnosis problem and provides basic
notations and definitions. Section 3 details the structure
of the proposed diagnoser and develops an active-learning
algorithm for constructing the diagnoser. In Section 4, an
illustrative example is provided to explain different steps
of the proposed algorithm. Finally, Section 5 concludes the
paper.

2. Background and Preliminaries

Consider the plant modeled by the automaton G as
follows:

G = (X,Σ, δ, x0) (1)

where X is the state space, Σ is the event set, δ ∶X×Σ→ 2X

is the transition relation and x0 is the initial state.

Example 1. Consider an unmanned aerial vehicle (UAV)
involved in a search mission to find a particular target.
A simple model for this search mission is the automaton
G = (X,Σ, δ, x0), which is shown by a directed graph in
Fig. 1. In this model, the event set Σ = {a, b, f1, f2} is
partitioned into two subsets: observable events Σo = {a, b}
and unobservable event set Σuo = ΣF = {f1, f2}, where the
event a is for “searching for a target,” the event b is for
“traveling back to the hangar,” f1 is a fault event that is

2016 IEEE 55th Conference on Decision and Control (CDC)
ARIA Resort & Casino
December 12-14, 2016, Las Vegas, USA

978-1-5090-1837-6/16/$31.00 ©2016 IEEE 7216

activated in the case of “loss of the communication link”
and the fault event f2 is for “fuel leakage”. In the case that
the UAV loses the communication link, it continues searching
around (to possibly get connected again), and if there is a
fuel leakage, it quickly returns to the hangar. The events
cause transition from one state to another one over the state
space X = {1,2,3,4,5}. The initial state is x0 = 1 and
the transitions and their corresponding events are shown by
labeled arrows in Figure 1.

Figure 1. DES model of a UAV involved in a search mission, in which the
events a and b are for “searching for a target” and “traveling back to the
hangar.” The fault events f1 and f2 are for “loss of the communication
link” and “fuel leakage.”

In a DES plant G, the sequence of events forms a string,
and a set of strings forms a language. The string ε denotes
the zero-length string, and Σ∗ includes all possible strings
that can be defined over Σ. The concatenation of the strings
s1 and s2 is shown by s1.s2. To mathematically define the
language of a system (its all possibly generated strings),
we need to revise the definition of δ, which is originally
defined over the system’s events, and extend it to strings
as δ(x, s.e) = δ(δ(x, s), e) for any s ∈ Σ∗ and e ∈ Σ, and
δ(x, ε) = x. The language of a plant G can then be defined
as L(G) = {s ∈ Σ∗∣ δ(x0, s) is defined}. Extension-closure
of the language L is denoted by ext(L), where ext(L) ∶=
{s ∈ Σ∗∣∃sp ∈ L such that sp is a prefix of s}.

Consider that in plant G, faults f1, f2, . . . , and fn
can occur. We assume that these events are modeled
as unobservable events in the automaton G, i.e. ΣF =
{f1, f2, . . . , fn} ⊆ Σuo; Otherwise, if faults are observable
events, they can be trivially and immediately diagnosed. The
observable behavior of the system can be modeled by the
natural projection of the language of the system, L(G), into
observable event set, Σo, which can be defined as:

● P (ε) = ε,
● P (e) = e, if e ∈ Σo,
● P (e) = ε, if e ∉ Σo,
● P (s.e) = P (s)P (e), for s ∈ Σ∗ and e ∈ Σ.

Extending the natural projection operator to the language
of the plant G as P (L(G)) ∶= {P (s) ∣ ∀s ∈ L(G)}, it is
possible to capture the observable behaviors of the system.
The inverse projection of a string w ∈ Σ∗

o into L(G) ⊆ Σ∗ is
P −1(w) = {s ∈ L(G) ∣ P (s) = w}, and the inverse projec-
tion of a language L into L(G) is P −1(L) = ⋃

w∈L
P −1(w).

The diagnosis challenge is then to diagnose faults from the
observable behavior of the system which can be modelled
as P (L(G)).

Example 2. In plant G in Example 1, imagine we have
observed the string ab. This string in fact could be the
projection of the strings s1 = af1b, s2 = abf2, or s3 = ab
to the observable event set Σo as P (af1b) = P (abf2) =
P (ab) = ab. Strings s1 and s2 are faulty with the fault
types f1 and f2, while s3 is a normal (non-faulty) string.
Therefore, there is an ambiguity if the faults f1 and f2

have occurred in the original system. However, if the system
continues working and the string aba is observed, then it can
be verified that this string can only be the projection of the
string abf2a, concluding that the fault f2 has occurred. This
has to be investigated for all possible strings of the plant
G, to solve the diagnosis problem for plant G.

Inspired by this example, the fault diagnosis problem
can now be formally defined as follows:

Problem 1. In a discrete event system G, for any generated
string s ∈ L(G), from the observable part, P (s), determine
if a fault has occurred; if yes, diagnose the type of the
occurred fault.

3. CONSTRUCTING THE DIAGNOSER

Studying an unknown plant G, we aim to diagnose
occurred faults in G by addressing Problem 1. For this
purpose, we develop a diagnosis tool, so called diagnoser,
whose general structure is shown in Fig. 2. The diagnoser
Gd can be described by a tuple:

Gd = (Qd,Σd,∆, δd, h, q0) (2)

where Qd is the set of diagnoser states, Σd = Σo is the
event set, δd is the transition rule, ∆ is the output label set,
h ∶ Qd → 2∆ is the output function and q0 is the initial state.
The output label set, ∆, is as:

∆ = {N} ∪ {L1, L2, . . . , Lm}, Li ∈ {Fi,Ai} (3)

where N , Fi, and Ai stand for “normal,” “occurrence of the
fault fi” and “ambiguity in the occurrence of the fault fi,”
respectively.

The proposed algorithm constructs the diagnoser Gd by
asking two types of basic queries from an oracle:

● Membership queries: in which the algorithm asks
whether a string s belongs to P (L(G)), and if it is
faulty.

● Equivalence queries: in which the algorithm
asks whether L(Gd) = P (L(G)). If not,
the oracle returns a counterexample cex ∈
L(Gd)/P (L(G))⋃P (L(G))/L(Gd).

This information will be sorted in series of observation
tables. Each observation table is a 3-tuple (S,E,T), where
S ⊆ Σ∗ is a non-empty, prefix-closed, finite set of strings;
E is a non-empty, suffix-closed, finite set of strings, and
T (s) ∶ (S ∪ S.Σo). E → 2∆∪{0} is the condition map. The

7217

Figure 2. Fault Diagnoser structure

observation table T is a 2-dimensional array, whose rows
and columns are labeled by strings s ∈ (S∪S.Σo) and t ∈ E,
respectively. The entries of the tables are determined by the
condition map, T . For any w = s.t with s ∈ (S ∪S.Σo) and
t ∈ E, T (w) is determined as follows:

● T (w) = {0} if w ∉ P (L(G)) (i.e., w is not in the
observable part of the system’s language).

● T (w) = {N} if w ∈ P (L(G)), and for any u ∈
P −1(w), fi ∉ u, for all i = 1, . . . , n (i.e., w is a
normal (non-faulty) observation).

● T (w) = {L1, L2, . . . , Lm}, Li ∈ {Fi,Ai} where:

– Fi ∈ T (w) if all u ∈ P −1(w) contains the
fault fi (i.e., w is the observation of a faulty
string of type fi).

– Ai ∈ T (w) if the observation of w creates
ambiguity in occurrence of fault fi, meaning
that ∃u,u′ ∈ P −1(w) such that fi ∈ u and
fi /∈ u′.

To enhance the algorithm we introduce a label propaga-
tion mechanism, which automatically extracts information
from the observation tables and answers some of the queries
without referring to the teacher. The label propagation mech-
anism can be explained as follows:

1) The fault labels are propagated to keep track of
the occurrence of the faults in the past. Hence, if a
string s is faulty, so are all its possible extensions:

[s ∈ S ∪ S.Σ ∶ Fi ∈ T (s)] ⇒
[∀s′ ∈ ext(s) ∩ P (L(G)) ∶ Fi ∈ T (s′)]. (4)

2) For any string s that is not defined in the system,
so are all its extensions:

[s ∈ S ∪ S.Σ ∶ T (s) = {0}] ⇒
[∀s′ ∈ ext(s) ∶ T (s′) = {0}]. (5)

We start with the first observation table, T1, in which
S = E = {ε}, and then, we will fill up the table by applying
the function T (s) ∶ (S ∪ S.Σo).E → 2∆∪{0}. Each row in
the table can be shown by a function row ∶ (S ∪S.Σo).E →
(2∆∪{0})∣E∣.
Example 3. In Figure 3(a), the first observation table, T1,
is constructed for the automaton G in Example 1, in which
S = E = {ε}, and S.Σo = {a, b}. For the strings s = ε, s = a,
and s = b, we have respectively P −1(ε) = {ε, f2}, P −1(a) =
{a, af1, f2a} and P −1(b) = ∅. Therefore, we have T (b.ε) =
{0} as b ∉ P (L(G)). Also, we have T (a.ε) = {A1A2} as

there exists ambiguity in the occurrence of the faults f1 and
f2 (it cannot be determined if the string a is observed due
to the execution of a, af1, or f2a in the plant). Similarly, it
can be verified that T (ε.ε) = {A2}. These values of T have
been used to fill up table T1.

Definition 1. An observation table is said to be closed if
and only if:

∀t ∈ S.Σo,∃s ∈ S such that row(s) = row(t) (6)

If an observation table is not closed, it means that there
exists a string t ∈ S.Σo such that row(t) is different from
row(s) for all s ∈ S. To make the observation table closed,
it is sufficient to add the string t to S, and extend T to the
new table, accordingly.

Example 4. The observation table T1 in Figure 3(a) is not
closed as neither of the rows in S are equal to row(b) and
row(a), a, b ∈ (S.Σ − S). Therefore, to make it closed, a
and b are added to S. The updated table is called T2 and
is shown in Figure 3(b).

Definition 2. An observation table is said to be consistent
if and only if:

∀s1, s2 ∈ S with [row(s1) = row(s2)] ⇒
[row(s1.σ) = row(s2.σ)],∀σ ∈ Σo (7)

If an observation table is not consistent, there exist two
strings s1, s2 ∈ S with row(s1) = row(s2), σ ∈ Σo and
e ∈ E, such that T (s1σ.e) ≠ T (s2σ.e). Therefore, to make
the observation table consistent, it is sufficient to add σ.e to
E, and extend T to the new table, accordingly.

Example 5. The observation table T5 in Figure 3(f) is not
consistent. This can be simply verified by letting s1 = a
and s2 = ab , s1, s2 ∈ S, for which we have row(s1) =
row(s2) = {A1A2}, whereas for b ∈ Σo, row(s1.b) =
{A1A2} ≠ row(s2.b) = {F1}. To make the table consistent,
the event b is added to E. The updated table is called T6

and is shown in Figure 3(g).

For a complete (closed and consistent) observa-
tion table, we can construct the diagnoser Gd(Ti) =

7218

Figure 3. Constructing the observation tables and the diagnoser for the DES plant in Example 1: (a) The observation table T1 with S = E = ∅; (b) The
observation table T1 is not closed, so a and b are added to S to form T2; (c) The observation table T2 is not closed, so aa is added to S to form T3;
(d) The conjectured automaton Gd(T3) for the complete observation table T3; (e) The counterexample cex = abab is returned by the oracle for T3,
and hence, the counter example and all its prefixes are added to S to form T4; (f) The observation table T4 is not closed, so abb is added to S to form
T5; (g) The observation table T5 is not consistent as row(a) = row(ab), but row(a.b) ≠ row(ab.b), and hence, b is added to E to form T6; (h) The
conjectured automaton for the complete table T6, which is the final diagnoser for the DES plant in Example 1. The membership queries to the oracle are
shown in bold red.

CoAc(Qd,Σd,∆d, δd, h,Qm, q0) as follows:

Qd = {row(s)∣s ∈ S}
Σd = Σo

∆d = ∆ ∪ {0}
δd(row(s), σ) = row(s.σ)
h(row(s)) = T (s.ε)

Qm = {row(s)∣s ∈ S and h(row(s)) ≠ 0}
q0 = row(ε) (8)

where CoAc is an operator that removes the states from
which there does not exist a path to marked states, and Qm

is the set of marked (desired) states.

Example 6. Figure 3(d) shows the automaton Gd(T3), con-
structed for the observation table T3 in Figure 3(c). Gd(T3)
has three states which are labeled by 1, 2, and 3 at the upper
part of the circles, representing the distinct, non-zero rows in
S: row(ε), row(a), and row(aa), respectively. Due to the
construction procedure, the operator CoAc removes the non-

7219

marked states which correspond to zero-rows in the table
and only leaves the marked states (Qd = Qm). The output
function values for each state are shown at the lower part
of the circles. The initial state is q0, which corresponds to
row(ε), and is shown by an entering arrow. The transition
rule, δd, is shown by labeled, directed arrows connecting
the states of the constructed automaton.

Algorithm 1 Learning diagnoser algorithm
1: input: The observable event set, Σo, and the observable

language of the system P (L(G))
2: output: The diagnoser Gd with L(Gd) = P (L(G))

which is consistent with T
3: Initialization: Set i = 1, S = E = {ε}, and form S.Σ,

accordingly.
4: Use the membership queries to build the observation

table T1(S,E,T).
5: while Ti(S,E,T) is not complete do
6: if Ti is not closed then
7: Find s1 ∈ S and σ ∈ Σo such that row(s1.σ) is

different from row(s) for all s ∈ S;
8: Add s1.σ to S;
9: Set i = i + 1;

10: Update Ti for (S ∪ S.Σo).E using the label
propagation mechanism and membership queries;

11: end if
12: if Ti is not consistent then
13: Find s1, s2 ∈ S, σ ∈ Σo and e ∈ E such that

row(s1) = row(s2) but T (s1.σ.e) ≠ T (s2.σ.e);
14: Add σ.e to E;
15: Set i = i + 1;
16: Update Ti for (S∪S.Σ).E using the label prop-

agation mechanism and membership queries;
17: end if
18: end while
19: Construct the automaton Gd(Ti) using (8).
20: Ask equivalence query.
21: if The teacher replies with the counterexample cex then
22: Add cex and its prefixes to S;
23: Set i = i + 1;
24: Update Ti for (S ∪S.Σ).E using the label propaga-

tion mechanism and membership queries;
25: Go to line 5.
26: end if
27: return: Gd(Ti)

After constructing the diagnoser automaton, Gd(Ti),
the diagnoser keeps running until a counterexample, cex ∈
L(Gd(Ti))/P (L(G))⋃P (L(G))/L(Gd(Ti)), is detected
by the teacher. In this case, the counterexample cex and all
its prefixes will be added to S, and then, the table will be
updated with the new changes. This new table again has to
be checked for closeness and consistency with T (s).

Example 7. Figure 3(d) shows the diagnoser Gd(T3), which
is constructed for the observation table T3 in Figure 3(c). It
can be seen that L(Gd(T3)) is not equivalent to P (L(G))
as s = abab ∈ P (L(G))/L(Gd(T3)). Therefore, in response

to the equivalence query, the oracle returns cex = abab.
Correspondingly, the string cex = abab and all its prefixes
are added to S. The updated table is called T4 and is shown
in Figure 3(f).

This procedure, starting from the initialization of the
algorithm, making the observation tables closed and con-
sistent, and checking for counterexamples can be contin-
ued until the algorithm returns the correct diagnoser. This
process of constructing the diagnoser Gd is summarized in
Algorithm 1.

4. ILLUSTRATIVE EXAMPLE

To illustrate the procedure detailed in Algorithm 1, we
use the automaton G in Example 1, which is a model for
a UAV that is involved in a simple search mission. The
fault events are assumed to be unobservable; Otherwise, if
faults are observable events, then they can be trivially and
immediately diagnosed. Assume that we do not know this
DES model of the plant, and by using Algorithm 1, we are
aiming to construct a diagnoser for this DES plant.

We first initialize the algorithm by constructing the
observation table T1, in which S = E = ε as shown in
Figure 3(a). Then, we will fill up the table (S,E,T) by
applying T to S ∪ S.Σo. The resulting observation table, is
not closed as none of the rows in S are equal to row(a)
and row(b), a, b ∈ (S.Σ−S). Therefore, a and b are added
to S in T2 as shown in Figure 3(b). Again, it can be seen
that T2 is not closed as none of the rows in S are equal
to row(aa) = {F2} for aa ∈ (S.Σ − S). Therefore, aa is
added to S in T3 as shown in Figure 3(c). The observation
table T3 in Figure 3(c) is a complete table, and hence, we
can construct the automaton Gd(T3) using (8) as shown in
Figure 3(d).

For the conjectured automaton Gd(T3), the teacher re-
sponds the equivalence query by returning the counterexam-
ple cex = abab ∈ P (L(G))/L(Gd(T1)). Hence, cex = abab
and its prefixes are added to S in T4 as shown in Fig-
ure 3(e). Updating T4, the resulting observation table is
not closed as none of the rows in S are equivalent to
row(abb) = {F1}. Therefore, the string abb is added to S
in T5 (Figure 3(f)). The new observation table, T5, is not
consistent as row(a) = row(ab), but row(a.b) = {A1A2}
and row(ab.b) = {F1}. Hence, b is added to E in T6 to
make it consistent (Figure 3(g)). The observation table T6,
shown in Figure 3(g), is now both closed and consistent,
for which the conjectured automaton is shown in Figure
3(h). For the automaton, Gd(T6), the equivalence query is
replied by “Yes” as P (L(G)) = L(Gd(T6)). Therefore, the
automaton Gd(T6) is the diagnoser for the plant G. The
membership queries to the oracle are shown in bold red in
the observation tables in Figure 3. Overall, the diagnoser
Gd(T6) is constructed by actively raising 21 membership
queries and two equivalence queries to the oracle.

The diagnoser Gd(T7) can now be used as a diagnosis
tool by synchronizing the diagnoser with the plant. Imagine
the string af1 occurs in the plant G. The diagnoser Gd(T7)

7220

will observe the observable part, a, and will transit to State
2 with the output label A1A2 , as at this stage, the diagnoser
is not sure whether the faults f1 and f2 have occurred or
not. When the plant keeps running and generates the string
af1a, then the diagnoser Gd(T7) observes the string aa, and
will transit to State 4 with the output label F2, informing
that the fault f2 has occurred. This can be verified for all
other strings that can be generated by the plant G.

5. CONCLUSION

In this paper, we introduced a new learning-based algo-
rithm for constructing a diagnoser for DES plants. An active-
learning technique was developed to construct the diagnoser
which detects and identifies occurred faults by monitoring
the observable behavior of the plant. The algorithm actively
makes two types of queries to a teacher: “the membership
queries” and “the equivalence queries”. Receiving the an-
swers to these queries, the algorithm gradually completes
a series of observation tables leading to the construction
of the diganoser. The proposed algorithm was applied to a
DES model of a UAV involved in a search mission with
multiple types of faults. The corresponding diagnoser was
constructed through the proposed active learning mecha-
nism.

Acknowledgment

This research is supported by Air Force Research Lab-
oratory and Office of the Secretary of Defense under agree-
ment number FA8750-15-2-0116 as well as US ARMY Re-
search Office under agreement number W911NF-16-1-0489.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of Air Force
Research Laboratory, ARMY Research Office, OSD, or the
U.S. Government.

References

[1] A. Finn and S. Scheding, Developments and challenges for au-
tonomous unmanned vehicles. Springer, 2012.

[2] X. Iturbe, K. Benkrid, T. Arslan, I. Martinez, M. Azkarate, and M. D.
Santambrogio, “A roadmap for autonomous fault-tolerant systems,” in
IEEE Conference on Design and Architectures for Signal and Image
Processing (DASIP), 2010, pp. 311–321.

[3] J. Carreno, G. Galdorisi, S. Koepenick, and R. Volner, “Autonomous
systems: Challenges and opportunities,” DTIC Document, Tech. Rep.,
2010.

[4] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems. Springer Science & Business Media, 2009.

[5] F. Basile, P. Chiacchio, and G. De Tommasi, “An efficient approach
for online diagnosis of discrete event systems,” IEEE Transactions
on Automatic Control, vol. 54, no. 4, pp. 748–759, April 2009.

[6] M. P. Cabasino, A. Giua, and C. Seatzu, “Fault detection for dis-
crete event systems using petri nets with unobservable transitions,”
Automatica, vol. 46, no. 9, pp. 1531 – 1539, 2010.

[7] M. Fanti, A. Mangini, and W. Ukovich, “Fault detection by labeled
petri nets and time constraints,” in 3rd International IEEE Workshop
on Dependable Control of Discrete Systems (DCDS), 2011, pp. 168–
173.

[8] B. Hrúz and M. Zhou, Modeling and control of discrete-event dynamic
systems: With petri nets and other tools. Springer, 2007, vol. 59.

[9] M. Ioradache and P. Antsaklis, “Resilience to failures and reconfigu-
rations in the supervision based on place invariants,” in Proceedings
of the 2004 American Control Conference, vol. 5, June 2004, pp.
4477–4482 vol.5.

[10] D. Lefebvre and C. Delherm, “Diagnosis of des with petri net
models,” IEEE Transactions on Automation Science and Engineering,
vol. 4, no. 1, pp. 114–118, 2007.

[11] C. Bernardeschi, A. Fantechi, and L. Simoncini, “Formally verifying
fault tolerant system designs,” The Computer Journal, vol. 43, no. 3,
pp. 191–205, 2000.

[12] H. Schepers and J. Hooman, “A trace-based compositional proof
theory for fault tolerant distributed systems,” Theoretical Computer
Science, vol. 128, no. 1, pp. 127–157, 1994.

[13] N. Dragoni and M. Gaspari, “An object based algebra for specifying
a fault tolerant software architecture,” The Journal of Logic and
Algebraic Programming, vol. 63, no. 2, pp. 271 – 297, 2005, special
Issue on Process Algebra and System Architecture.

[14] L. Console, C. Picardi, and M. Ribando, “Diagnosis and diagnosabil-
ity analysis using process algebra,” in Proceedings of the Eleventh
International Workshop on Principles of Diagnosis (DX-00), MX,
Morelia, Mexico, 2000, pp. 25–32.

[15] A. Paoli and S. Lafortune, “Diagnosability analysis of a class of hi-
erarchical state machines,” Discrete Event Dynamic Systems, vol. 18,
no. 3, pp. 385–413, 2008.

[16] A. M. Idghamishi and S. H. Zad, “Fault diagnosis in hierarchical
discrete-event systems,” in Decision and Control, 2004. CDC. 43rd
IEEE Conference on, vol. 1. IEEE, 2004, pp. 63–68.

[17] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and
D. Teneketzis, “Diagnosability of discrete-event systems,” IEEE
Transactions on Automatic Control, vol. 40, no. 9, pp. 1555–1575,
1995.

[18] S. H. Zad, R. H. Kwong, and W. M. Wonham, “Fault diagnosis
in discrete-event systems: framework and model reduction,” IEEE
Transactions on Automatic Control, vol. 48, no. 7, pp. 1199–1212,
2003.

[19] S. Jiang and R. Kumar, “Diagnosis of repeated failures for discrete
event systems with linear-time temporal-logic specifications,” IEEE
Transactions on Automation Science and Engineering, vol. 3, no. 1,
pp. 47–59, 2006.

[20] O. Contant, S. Lafortune, and D. Teneketzis, “Diagnosis of inter-
mittent faults,” Discrete Event Dynamic Systems, vol. 14, no. 2, pp.
171–202, 2004.

[21] W. Qiu and R. Kumar, “Decentralized failure diagnosis of discrete
event systems,” IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, vol. 36, no. 2, pp. 384–395, 2006.

[22] A. White and A. Karimoddini, “Semi-asynchornous failure diagnosis
for disctrete event systems,” To appear in IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC2016), 2016.

[23] J. Dai, A. Karimoddini, and H. Lin, “Achieving fault-tolerance and
safety of discrete-event systems through learning,” in 2016 American
Control Conference (ACC), 2016, pp. 4835–4840.

[24] D. Angluin, “Learning regular sets from queries and counterexam-
ples,” Information and computation, vol. 75, no. 2, pp. 87–106, 1987.

[25] R. L. Rivest and R. E. Schapire, “Inference of finite automata using
homing sequences,” Information and Computation, vol. 103, no. 2,
pp. 299–347, 1993.

7221

